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Abstract: In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. 
Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic 
finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the 
experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A 
coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback 
responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights 
and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results 
showed that a more accurate prediction of springback can be acquired using the FEM-PSONN model. 
Key words: incremental sheet forming (ISF); springback prediction; finite element method (FEM); artificial neural network (ANN); 
particle swarm optimization (PSO) algorithm 
                                                                                                             
 
 
1 Introduction 
 

Current market requirements for products show a 
need to produce a variety of parts at low cost and with a 
short delivery period. Incremental sheet forming, a 
method that can meet these needs, is in demand and has 
been intensively studied [1−3]. The process was 
conceived to provide computer numerical control (CNC) 
flexible sheet forming with a toolpath program to replace 
the need for fixed dies or tooling (Fig. 1). However, 
springback is a major concern in the ISF process, and an 
accurate prediction of springback is essential for the 
design of toolpaths for ISF operations [4,5]. 

There have been many studies about springback 
prediction in ISF processes. HAN et al [6] investigated 
springback prediction in the ISF process using a genetic 
neural network. However, the optimization speed was 
slow, and the accuracy was not very high. AMBROGIO 
et al [7] investigated material formability in incremental 
forming and, in particular, the evaluation and 
compensation of elastic springback through experimental 

investigation and explicit FEM analysis. TANAKA et al 
[8] investigated the negative springback phenomenon  
in sheet metal obtained by the incremental forward 
stretch forming operation, both experimentally and 
numerically. 

However, traditional and new simulation techniques 
of springback prediction are laborious trial-and-error 
procedures, which involve long cycle times and high cost. 
Artificial neural network (ANN) has been proven to be a 
great tool for solving a wide variety of problems because 
of its ability to approximate non-linear functions in the 
absence of closed form solutions [9]. ANN provides a 
new way to solve complex, non-linear, polytropic 
springback problems. The main drawback of ANN is the 
need of large amounts of data for training and validating 
efforts. For these reasons, a FEM-ANN hybrid technique 
was used to generate reasonable data while avoiding 
expensive and time-consuming experiments. 

Among the various ANNs, the back-propagation 
(BP) method is one of the most important and widely 
used algorithms. However, the conventional BP 
algorithm suffers from some shortcomings, such as a  

                       
Foundation item: Project (50175034) supported by the National Natural Science Foundation of China 
Corresponding author: Fei HAN; Tel: +86-10-88803702; E-mail: hanfei@ncut.edu.cn 
DOI: 10.1016/S1003-6326(13)62567-4 



Fei HAN, et al/Trans. Nonferrous Met. Soc. China 23(2013) 1061−1071 

 

1062 

 

 
Fig. 1 Positive incremental sheet forming process 
 
very slow convergence speed in training, and a tendency 
to get stuck in a local minima. Therefore, the present 
work intended to integrate ANN with particle swarm 
optimization (PSO) algorithm to properly determine the 
weights of the neural network, compensating for the 
defects of the BP algorithm. This method made use of the 
strong global and local search capabilities of the PSO 
and BP algorithms respectively. 

In this work, the springback of the typical frustum 
of cone-shaped forming was investigated. Based on FEM 
simulation data, the prediction model of the springback 
was developed by the neural network and the particle 
swarm optimization algorithm. The predicted value of 
the springback in the FEM-PSONN model was in 
accordance with the results of the FEM. 
 
2 Experimental design and FEM analysis 
 
2.1 Experimental setup 

For the experiments described in the present work, a 
special 3-axis NC-controlled machine was used in the 
incremental sheet forming, as shown in Fig. 2. The blank 
was fastened by a properly designed fixture. According 
to the design of fixture, the thickness of the blank was 1 
mm and its length and width were both 330 mm. The 
material of the blank was 08Al in the annealed state. 
 

 
Fig. 2 Incremental sheet forming equipment 

The circular die used for the experiments had a 
diameter of 80 mm and an edge radius of 3 mm. A 
spherically nosed tool (tool steel, Cr13) was used for all 
applied strategies. The code for the toolpath was 
programmed using the computer automated 
manufacturing module of Unigraphics NX, and the tool 
speed was set as 200 mm/s. Oil was applied to further 
minimizing friction. Figure 3 shows the parts produced 
by incremental sheet forming. 
 

 
Fig. 3 Parts of incremental sheet forming 
 
2.2 Simulation setup 

A three-dimensional elasto-plastic finite element 
model was set up to simulate the ISF process using 
ABAQUS/Explicit. The results were then transferred to 
ABAQUS/Standard (a static implicit code) to simulate 
the springback step (tools removal). Because of the 
properties of the process, there were several 
nonlinearities involved in the simulation of incremental 
sheet forming. In addition, for the considered 
applications, the incremental forming process was 
typically in full 3D without any symmetry plane. The 
simulation usually required the use of a large number of 
elements and the tool moving along a relatively long 
trajectory, leading to a complicated and time-consuming 
finite element analysis. To validate the model, similar 
parameters and values of material properties were used 
in both the simulation and the experimental study. 
2.2.1 Material and process parameters 

A series of tensile tests were conducted to determine 
the material properties experimentally, and these material 
parameters were input for the simulation. The main 
material parameters are shown in Table 1. 

ISF is a complex cold-mechanical process. There 
are many factors that affect the forming process, such as 
vertical step downs (Δz) between the consecutive 
contours, the tool diameter (D), the sheet metal thickness 
(t), the wall inclination angle (α), and the final part 
height (H). Figure 4 shows the parameters of the ISF 
process. 
2.2.2 Finite element model 

The model used 14400 4-node shell elements 
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Table 1 Material parameters of tensile samples 
Coefficient of normal 

anisotropy Material 
Yield strength, 

σs/MPa 
Tensile strength, 

σb/MPa 
Enhancement 
factor, K/MPa

Hardening 
exponent, n 

Elongation rate, 
δt/% 

r0 r45 r90 

L2Y2 103 143 326.5 0.121 16.9 0.98 1.05 1.19

08AL 175 303 519 0.223 42.5 1.71 1.14 1.83

SUS304 235 611 1262.3 0.56 71.3 0.96 1.12 0.98

 

 
Fig. 4 Parameters of ISF process 
 
(Abaqus type S4R) with five integration points through 
the thickness of the model. The material was assumed to 
be planar anisotropic following Hill’s 1948 yield 
criterion with kinematic hardening. The tool, partial die, 
clamping plate and backing plate were modelled as rigid 
surfaces. Coulomb’s friction law was applied, and the 
friction coefficients were 0.05 between the blank and the 
tool and 0.15 between the blank and the partial die. The 
contact condition was implemented through a pure 
Master-Slave contact algorithm. Figure 5 shows the FEM 
model for the process. 
 

 

Fig. 5 FEM model for process 
 

To synchronize the FE simulation with the 
experiment, the NC file from the actual experiment was 
imposed upon the simulation to move the forming tool. 
The tool movement was controlled by predefined 
displacement constraints in several load steps. Using an 
artificially high tool velocity to compensate for the real 
process was considered a potentially good method to 
shorten the simulation time. Thus the tool feed rate was 
artificially increased to 2000 mm/s. The simulation time 

was reduced significantly as the tool velocity increased 
by 10 fold. 
2.2.3 Validation of FE model 

To find out how well the simulation model of the 
springback was able to represent reality, a comparison 
with an experimental study was made. With the process 
parameters set as D=10 mm, α=40°, a height of the final 
part of 20 mm, Δz=1 mm, and an L2Y2 aluminium sheet 
thickness of 2 mm, the experiment and numerical 
simulation of the truncated cone were performed. When 
the part was complete, the final shape was measured 
offline with a 3D laser scanner (Fig. 6) and compared 
with the simulation prediction (Fig. 7). As shown in  
Fig. 7, the experimental and numerical results were 
accordant. 
 

 
Fig. 6 Set-up for measurements using a laser scanning system 
 

 

Fig. 7 Comparison of simulation and test results of a truncated 
cone piece symmetric cross section 
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The maximum deviation in the z-axis direction was 
1.163 mm between test shape and simulation shape, in 
which that in x-axis direction was 46.421 mm. Therefore, 
the 3D finite element model used in this work can be 
considered reasonable and the results of the simulation 
can be considered reliable. 
 
3 Design of process parameters based on an 

orthogonal experiment 
 

Orthogonal experimental design is one of the basic 
means of Taguchi parameter design based on Latin 
Square theory and Group theory, and it can be used to 
design multi-factor tests. As a result, the size of the full 
permutation and combination of experiments concerning 
various factors could be greatly reduced; therefore, it is 
considered to be an excellent experimental design 
method. In this work, the parameter design of orthogonal 
experimentation was used to provide the sample for the 
neural network. 
 
3.1 Experiment index of a workpiece springback of 

incremental sheet forming 
To analyze the sheet springback of incremental 

sheet forming, as shown in Fig. 8, Δα (angle difference 
before and after springback in the symmetrical section of 
the truncated right angle cone workpiece ) was taken as 
the experiment index. 
 

 
Fig. 8 Schematic diagram of springback angle of incremental 
sheet forming 
 

In this work, the resilience value was assessed by 
the springback angle, as shown in Fig. 8. In the figure, 
the solid line is the target-shape contour of the 
incremental sheet forming, the dotted line is the 
actual-shape contour after springback, α is the sidewall 
angle before springback, α′ is the sidewall angle after  

springback, and Δα is the difference between α and α′, 
which ultimately represents the springback angle of the 
workpiece. 
 
3.2 Orthogonal experimental design 

According to the characteristics of incremental 
sheet forming and our attempts to emulate practical 
production conditions as closely as possible, six main 
factors affecting the experiment index were chosen as 
experimental design variables (the ratio of yield strength 
to the elastic modulus of the sheet, the sheet thickness, 
the diameter of the tool head, the forming working  
height, the half-apex angle of forming parts, and the 
monolayer feeding quantity of the tool head), and 
interaction between design variables was ignored. The 
abbreviations of every factor in sequence were A, B, C, D, 
E, F, in the context of the possible value range for each 
factor; together with the professional knowledge and the 
FE simulation results, this approach allowed three levels 
of every design variable (factor) to be acquired as shown 
in Table 2. 

The orthogonal table, L18(37), consisting of three 
levels of six design variables each, was used to design a 
set of experiments. Therefore, 18 calculation 
combinations with orthogonal conditions were 
constructed, and 18 FE simulations of incremental sheet 
forming were generated. 
 
3.3 Orthogonal experiment simulation results and 

analysis 
The corresponding experimental factors were 

combined with ABAQUS to create 18 simulations of 
incremental sheet forming, with the orthogonal 
experiment results shown in Table 3. 
3.3.1 Range analysis 

The range analysis method was used to calculate the 
range value (R) of each column in the orthogonal table 
using mathematical statistical method. The range was 
used to determine the primary and secondary order of 
influence factors. Factors with large range values were 
significant, while those with small range values were not. 
The range values were calculated from Table 4. The 
order of the ranges was R5>R4>R3>R1>R6>R2. Therefore, 
the order of impact of each factor on the experiment 
index was, from the largest to the smallest, E, D, C, A, F, 
and B. 

 
Table 2 Levels of analyzing factors in a digital incremental sheet forming springback 

Factor 

Level A, 
ratio of yield strength to

elastic modulus/10−3 

B, 
sheet 

thickness/ mm 

C, 
diameter of

tool head/mm

D, 
forming working

height/mm 

E, 
half-apex angle of 
forming parts/(°) 

F, 
monolayer feeding

quantity/mm 
1 1.450(L2Y2) 1 10 10 40 0.5 
2 0.845(08Al) 1.5 15 20 50 0.75 
3 1.119(SUS304) 2 20 30 60 1  
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Table 3 Orthogonal experiment results 

No. A B C D E F Springback 
angle/(°) 

1 0.845 1.5 15 10 60 0.75 9.61 

2 1.450 2 20 30 60 0.5 7.30 

3 1.450 1.5 15 30 50 0.5 10.19 

4 1.119 1.5 10 30 40 1 13.70 

5 0.845 2 20 10 50 1 17.75 

6 0.845 2 15 30 40 1 14.90 

7 1.119 2 10 10 60 0.5 8.18 

8 1.119 1 20 30 50 0.75 11.13 

9 1.119 1 15 10 40 0.5 19.66 

10 1.450 1.5 20 10 40 0.75 22.84 

11 1.119 1.5 20 20 60 1 8.48 

12 0.845 1 20 20 40 0.5 19.07 

13 0.845 1 10 30 60 0.75 5.78 

14 1.119 2 15 20 50 0.75 12.59 

15 1.450 1 15 20 60 1 7.43 

16 1.450 2 10 20 40 0.75 15.50 

17 0.845 1.5 10 20 50 0.5 10.62 

18 1.450 1 10 10 50 1 13.11 
 

 
The average simulated values of the springback 

angle of each factor at different levels are shown in   
Fig. 9. The half-apex angle of forming parts was the 
angle most sensitive to springback. When the load was 
partially uninstalled, there was an increase in the 
half-apex angle of the forming parts, thus the force 
released by the elastic deformation ascended, and the 
springback became more obvious. The forming working 
height was also very sensitive to the springback. Because 
of the partial increase of the plastic deformation of the 
sheet, springback decreased. The diameter of the tool 
head was also sensitive to the springback. The larger the 
diameter of the tool head, the more the residual    
stress was released when uninstalling the load, thus the  

 
Table 4 Range analysis of process parameters on springback 

Index A B C D E F 

Ti1 76.37 76.18 66.89 91.15 105.67 75.02

Ti2 77.73 75.44 74.38 73.69 75.39 77.45

Ti3 73.74 76.22 86.57 63 46.78 75.37

Ki1 12.73 12.70 11.15 15.19 17.61 12.50

Ki2 12.96 12.57 12.40 12.28 12.57 12.91

Ki3 12.29 12.70 14.43 10.50 7.80 12.56

R 0.67 0.13 3.28 4.69 9.81 0.41

Range order 4 6 3 2 1 5 

Sensitivity E>D>C>A>F>B 

 
 

 
Fig. 9 Impact of each factor and level on springback 



Fei HAN, et al/Trans. Nonferrous Met. Soc. China 23(2013) 1061−1071 

 

1066 
 
springback increased. As shown in Fig. 9, the curve of 
factor C increased monotonically. The material 
parameters determined the properties of the material 
itself. Though the sensitivity was not obvious, it still had 
a decisive impact on the results. However, the monolayer 
feeding quantity of the tool head and the sheet thickness 
were not very sensitive to springback. 
3.3.2 Variance analysis 

Although the range analysis was intuitive and easy 
to calculate, the accuracy of the calculations was 
insufficient. To overcome the low accuracy of the range 
analysis, the experimental data were processed by 
variance analysis. 

It can be observed from Table 5 that the variance 
caused by the change of the half-apex angle of the 
forming parts accounted for 72.84% (288.924/396.648) 
of the variance. The change of the forming working 
height accounted for 16.96% (67.263/396.648), the 
change of the diameter of the tool head accounted for 
8.29% (32.870/396.648), the change of the material 
factors accounted for 0.35% (1.369/396.648), the change 
of the monolayer feeding quantity of the tool head 
accounted for 0.14% (0.574/396.648), and the change of 
the sheet thickness only accounted for 0.016% 
(0.065/396.648). Therefore, the order of impact of each 
factor on the experiment index was E, D, C, A, F, and B. 
Thus, the significance analysis conclusions for each 
factor using variance analysis were in accordance with 
the conclusions by the range analysis. 
 
Table 5 Variance analysis 

Variance 
source 

Square of 
deviance Freedom Mean sum 

of square F Significance

A 1.369 2 0.685 0.613 0.578 

B 0.065 2 0.032 0.029 0.972 

C 32.870 2 16.435 14.720 0.008 

D 67.263 2 33.631 30.122 0.002 

E 288.924 2 144.462 129.388 0.000 

F 0.574 2 0.287 0.257 0.783 

Error 5.582 5 1.116   

Total 
variance 396.648 17    

 
4 Model of springback prediction based on 

neural network of a particle swarm 
 

In the incremental sheet forming process, the 
springback prediction has a great influence on the 
accuracy of the forming parts’ final shapes. As a result, 
fast and accurate springback prediction is particularly 
important. For most metal plastic forming processes, a 
complete and accurate analytical model for calculating 

springback quantity was unable to be established because 
numerical simulations or empirical formulas were used 
to meet the needs of the engineering technology. 
However, this method is limited regarding calculation 
accuracy and speed. Therefore, it is very important to 
find a reasonable and scientific method to calculate the 
springback accurately in incremental sheet forming 
processes. 

The error back propagation neural network 
algorithm has a simple structure, is self-learning, and 
uses parallel processing [10]. The BP algorithm has the 
advantage of optimization with precision, but it also has 
some shortcomings, such as the tendency to fall into 
local minima, a slow convergence rate and a chance to 
cause vibration effects. Therefore, in this section, the 
strategy of combining artificial neural networks and the 
particle swarm optimization algorithm was used, and a 
prediction model of springback quantity of the 
incremental sheet forming using the combined PSONN 
(particle swarm optimization and neural networks 
algorithm) was established. The model effectively solved 
the local convergence of a traditional BP network and 
improved the learning speed and prediction accuracy. 
 
4.1 BP and its improved model of neural networks 

The BP neural network can adopt the error 
back-propagation learning algorithm and use the gradient 
searching technique to achieve the minimization of the 
mean square error of the actual output and the expected 
output. 

The BP learning process is as follows: the input 
value of the network from the input layer passes to the 
hidden layer through a weighting treatment, and then the 
output of the hidden layer is obtained from the operation 
of the activation function of the hidden layer. The output 
value of the weighted hidden layer is transmitted to the 
output layer after the weighting treatment, and then the 
output value of the network is obtained after the 
operation of the activation function of the output layer. 
The error is back propagated, and the network 
connection weights between layers and the neuron 
threshold are modified, layer by layer, to decrease the 
error. Training is repeated until the errors meet the 
accuracy requirements [11−13]. 

However, the BP algorithm has the disadvantages of 
easily falling into the local minimum and a slow 
convergence speed. To counter these disadvantages, an 
additional momentum method and an adaptive learning 
rate were used. 
 
4.2 Hybrid algorithm model of particle swarm and 

neural network 
The particle swarm optimization (PSO) algorithm is 

a global optimization algorithm based on group evolution, 
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and it can obtain a near optimal global solution, without 
falling into a local minima. In addition, its optimization 
process does not rely on gradient information and its 
high search efficiency is robust [14−16]. 

To overcome the shortcomings of the BP algorithm, 
which easily falls into a local minima and has a slow 
convergence rate, and to improve the convergence speed 
and accuracy of the springback-prediction model, this 
section applies the particle swarm optimization algorithm 
to train and model the artificial neural network with the 
goal of constructing a model with a faster convergence 
speed and a higher prediction accuracy, obtaining a better 
compensation effect. 
4.2.1 Particle swarm algorithm 

In the PSO algorithm, each solution to the 
optimization problem is used to search for a ‘bird’ in 
space that we call a particle. Each particle has its own 
position and velocity (which determines the direction of 
flight and distance), and proper values for these 
parameters are determined by the optimization function. 
Finally, the particle swarm follows the optimal particles 
to search in the solution space. 
4.2.2 Hybrid algorithm for particle swarm neural 

networks 
The network learning algorithm work flow is as 

follows: 
Step 1: To determine the algorithm parameters, 

firstly the size of the PSO particle number m must be 
determined. Secondly, we must set the initial inertia 
weight w, the connection thresholds of neural network θik 
and θkl, the maximum allowable number of iterations kmax, 
and the random variables c1 and c2, as well as initializing 
iterations k=1. 

Step 2: The term {wik} is used to express the 
connection weights between the input layer and the 
hidden layer. {wkl} expresses the connection weights 
between the hidden layer and the output layer. The 
weights of the neural networks and the connection 
variables are coded as follows: x={wik, wkl, θik, θkl}. 

Step 3: Initialization. In a given interval, when 
initializing randomly connection weights, the connection 
variable is usually initialized to a random [0,1] interval 
of real numbers. Therefore, the PSO is initialized to 
generate PSO{xi(0), i=1, 2, …, m} on behalf of m types 
of different weights of the neural network, and is used as 
the initial solution set of the PSO algorithm. The PSO 
algorithm training weight speed is initialized randomly. 

Step 4: The particle xi, which corresponds to a 
neural network output value and the expected mean 
variance minimum, is targeted using Eq. (1) to derive the 
fitness value f(Xi) of individual xi, and to initialize Gbest 
and Pbest. 

1( )
1 ( )

f X
E X

=
+

                           (1) 

21 [ ( ) ( )]
2

p m

j j
k j

E d k y k= −∑∑                    (2)  

where f(X) expresses the fitness of X; E(X) expresses the 
error level after the training of the BP network results 
expressed by individual X, here decided by Eq. (2); dj(k) 
is the desired output and selected as the objective 
function of the weight update; m is the number of output 
layer nodes. 

Step 5: The current fitness )( )(k
ixf  of each 

particle in PSO is compared with the individual extreme 
value )( )1( −k

ipf . If the current fitness of a particle is 
better than the individual extreme value before the 
iteration, then the individual extreme value )1()( −= k

i
k

i xp , 
where k represents the number of iterations, must be 
updated. Otherwise, )1()( −= k

i
k

i pp .  
Step 6: Update the global extreme value. k

i
k
g pp = , 

)},( , ),(max{)( )()(
1

)( k
m

kk
i pfpfpf L= of all the 

individual points, and the optimal fitness of the 
individual extreme values shall be used as the global 
extreme values. 

Step 7: Optimization of the particle position. The 
formulas (3) and (4) are used to update the velocity vi 
and position xi of each particle. 

 
( ) ( )( 1) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2
k k k k k k k

ij ij ij ij g ijV V c r p x c r p xω+ = + − + −  

(3) 
( 1) ( ) ( 1)k k k
ij ij ijX X V+ += +                          (4) 

where n is the dimension of solution space, namely, the 
number of independent variables; d is the n-dimension in 
the d-dimension; k is the current evolution algebra; 

1c and 2c are limited factors of displacement changes, 
often referred to as the acceleration weighting coefficient; 
ω(k) is the inertia weight. r1 and r2 are random numbers 
which change in the scope of [0,1]. At the same time, in 
the evolutionary process, in order to prevent the  
particles from flying out of the search space, usually the 
Vi will be limited to a certain extent, that is 

maxmax VVV i ≤≤− . 
Step 8: The fitness evaluation of new particle 

populations is generated by iterations. To determine 
whether the algorithm arrives at the maximum number 
kmax of iterations, or whether the training error E is less 
than the specified minimum error requirement, the 
iteration and output of the optimal solution of neural 
network are stopped. Otherwise, k=k+1, and it can be 
returned to step 4. 

Step 9: To calculate the neural network output using 
pg (obtaining the global optimum value eventually), the 
network weights and thresholds optimized for the 
particle swarm as the network initial weights and 
thresholds of the BP algorithm are taken, in accordance 
with the BP algorithm for training learning, which is to 
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be used for the PSO-ANN springback prediction models. 
 
5 Simulation experiments and results 

analyses 
 

To examine the effects of network learning using 
the improved PSO algorithm on the simulation 
experiments, we took the orthogonal experimental design 
data as sample sets using the standard BP network, the 
improved BP and PSO-BP to learn and test the samples, 
to evaluate their results, and to check the validity of the 
improved algorithm. 
 
5.1 Parameter settings of neural network model 

The neural network structure of springback 
prediction in incremental sheet forming is shown in   
Fig. 10. 

As observed in Fig. 10, there are 6 inputs and 1 
output in the network, and the choice of the number of 
hidden layer neurons is a very complex issue, according 
to the empirical formula cban ++= , where a is the 
number of the output neurons, b is the number of the 
input neurons, and c is a constant between 1 and 10. This 
finding highlighted the complexity involved in setting up 
the 11 nodes in the hidden layer when investigating the 
corresponding prediction time and accuracy. Eventually, 
the intelligent optimization model was identified to have 
a network structure of 6-11-1. 
 

 
Fig. 10 Topology structure of incremental forming springback 
prediction neural network 
 

In this work, the BP algorithm, the improved BP 
algorithm and the neural network model for springback 
prediction based on particle swarm optimization 
(PSO-ANN) were developed in a MATLAB language 
environment. For the standard BP algorithm training, the 
initial and threshold values were set randomly between 
[−1, 1] and the learning rate was set to be η=0.57. The 
improved algorithm used an initial learning rate of η=057 
and a momentum factor of α=0.85. In the process of 
learning, formulas (5) and (6) were used to adjust the 
learning rate and momentum factor. 

ij
ij

EW
W

η ∂
Δ = −

∂
                              (5) 

 
( ) ( ) ( ) ( 1)ij j i ijW k k y k W kηδ α= + Δ −               (6) 

 
where )1(Δ −kWij  is the amendment of the weight and 
threshold for the (k−1) time; α is the momentum factor. 

When the simulation of the prediction model of the 
springback samples with the PSO-ANN algorithm was 
performed, the initial population size was set to be 
m=100, the network structure was set to be 6-11-1, and 
the simulation used a total of 77 weights and 12 
thresholds; therefore, the search space for each particle in 
the particle swarm algorithm was 89-dimensional. 
Additionally, the initial inertia weight ω was 0.8, with a 
linear decrease in the number of iterations to 0.4, a 
learning factor of c1=c2=2, a maximum speed vmax=0.5, a 
maximum number of iterations Gmax=400, and a default 
error of 0.004. The algorithm was repeated several times, 
selecting different iterations and population sizes, 
choosing the particles of the highest fitness as the neural 
network initial rights (threshold) values, and then using 
the standard BP algorithm with a learning rate of η=0.57 
for a training target error of 0.002. 
 
5. 2 Analysis of simulation results 

To test the BP algorithm in the CNC incremental 
sheet forming springback prediction system, we used the 
standard BP algorithm, the improved BP algorithm and 
the PSO-ANN algorithm for training models for the 
performance of the convergence speed, the precision of 
the model predictions, and the incremental forming 
springback prediction, respectively, of the artificial 
neural network. 
5.2.1 Comparison of network convergence performance 

A comparison of the convergence performance 
using the BP algorithm, the improved BP algorithm and 
the PSO-ANN algorithm is shown in Table 6. 
 
Table 6 Performance comparison of three algorithms 

Algorithm Number of 
iterations CPU time/s Square sum

of errors 

BP algorithm 1625 23.87 0.00427 

Improved BP 
algorithm 637 11.62 0.00191 

PSO-ANN 
algorithm 76 3.95 0.00195 

 
The error convergence curve shown in Fig. 11 is the 

convergence of the training network adopted by the BP 
algorithm, the improved BP algorithm and the PSO-ANN 
algorithm. 

As observed from Fig. 11, at 1625 iterations, the BP 
algorithm started to step into a local minimum with an  
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Fig. 11 Error convergence curves of BP algorithm (a), 
improved BP algorithm (b) and PSO-ANN algorithm (c) 

error accuracy of 0.004127, and the convergence did not 
meet the requirements of the error precision. The number 
of iterations of the improved BP algorithm was 637. The 
running time of the PSO-ANN algorithm was 3.95 s, and 
the number of iterations was 76. In the case of the 
algorithms having the same accuracy, the PSO-ANN 
algorithm converged fast out of the three types of 
network training algorithms. 
5.2.2 Comparison of network prediction results 

To analyze the resilience of the volume prediction 
data of the training samples, the prediction results of the 
PSO-ANN hybrid algorithm, the BP algorithm and the 
improved BP algorithm were compared, as shown in 
Table 7. 

As observed in Fig. 12 and Table 7, the artificial 
neural network model based on the standard BP 
algorithm, the improved BP algorithm and the PSO-ANN 
algorithm for springback prediction in incremental 
forming has achieved good results. Concerning the 
precision of the predictions, the maximum relative error 
of the BP network model was 6.868%, the average 
absolute error was 3.106%, and the mean root square 
error was 1.159%. In the improved BP network model, 
the average absolute prediction error was reduced to 
2.257%, and the mean root square error was 0.8 %. The 
minimum relative error of the PSO-ANN model was 
only 0.017%, the maximum relative error was 3.069%, 
the average absolute error was reduced to 1.118%, and 
the mean root square error was 0.443%. 

It was observed that the use of the BP algorithm of 
the neural network had a good predictive ability, and its 
degree of fitness was better. However, due to the inherent 
defects in the BP network (the slow convergence and 
tendency to fall into local minimum points), its 
predictive power was inferior to the PSO-ANN algorithm. 
This was because the particle swarm algorithm had the 
feature of global search, which was used to optimize the 
BP network weights, and the threshold value of the BP 

 
Table 7 Comparison of prediction results of neural network algorithms 

BP model Improved BP model  PSO-ANN model Prediction 
sample 
number 

Actual 
value/(°) Prediction 

value/(°) 
Relative 
error/% 

Prediction 
value/(°) 

Relative 
error/%  Prediction 

value/(°) 
Relative 
error/% 

1 10.08 9.807 2.709 9.789 2.899  10.233 −1.517 
2 10.03 10.455 −4.239 10.046 −0.156  9.950 0.796 
3 14.25 13.742 3.567 13.683 3.982  13.813 3.069 
4 15.25 15.525 −1.804 15.759 −3.336  15.210 0.263 
5 10.88 11.047 −1.535 10.597 2.599  10.697 1.683 
6 19.62 19.067 2.821 19.735 −0.586  19.623 −0.017 
7 23.28 23.034 1.058 22.849 1.851  23.052 0.982 
8 19.27 20.594 −6.868 19.873 −3.127  19.525 −1.324 
9 7.22 7.642 −5.841 7.339 −1.653  7.240 −0.273 
10 10.60 10.535 0.615 10.348 2.382  10.734 −1.260  
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Fig. 12 Neural network prediction error curve 
 
algorithm to overcome the inherent defects, while 
highlighting the local optimization ability of the BP 
algorithm, thus achieving a fast convergence rate and 
increased accuracy. Simulation results showed that 
among the three algorithms, the testing error of the 
model for the PSO-ANN algorithm was the smallest and 
the network generalization ability was the best. It had the 
highest prediction accuracy and was better than the other 
two algorithms in the optimal approximation of the 
non-linear relationship between the incremental sheet 
forming springback and the influence factors. 
 
6 Conclusions 
 

1) The three-dimensional elastoplastic finite 
element model of incremental sheet forming processes 
was generated. The contrast and analysis of the 
simulation and test results of the example showed that 
the finite element model was correct and reasonable; 
further, the springback angle was found to be in 
accordance with the experimental results. 

2) An incremental sheet forming springback 
prediction model based on the particle swarm 
optimization neural network was established, the particle 
swarm optimization (PSO) algorithm was used to 
optimize the weights and thresholds of the neural 
network model, and the neural network was shown to 
have the ability to be trained based on available FEM 
simulation data. 

3) The samples of the neural network prediction 
model for springback prediction were tested using the 
standard BP algorithm, the improved BP algorithm and 
the PSO algorithm. Through a comparative analysis with 
the prediction results, it was observed that the back 
propagation neural network prediction model of the PSO 
algorithm proposed improved not only the prediction 
accuracy, but also the learning speed of the network. 
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基于 FEM-PSONN 技术的板材渐进成形回弹预测 
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摘  要：在板材渐进成形工艺中，回弹是影响板材渐进成形件质量的一个重要因素。为了设计板材渐进成形过程

中的工具路径，精确地预测和控制回弹很有必要。利用三维弹塑性有限元模型模拟渐进成形工艺，并将回弹角的

模拟结果与实验结果进行比较，结果吻合得很好，说明本有限元模型是有效的。提出一种耦合人工神经网络和有

限元法的技术(FEM-PSONN)模拟并预测不同工艺参数下制件的回弹量，利用粒子群优化算法优化神经网络模型的

权重和阈值。神经网络根据有限元模拟计算的样本库进行训练，结果表明利用 FEM-PSONN 模型能更准确地预测

回弹。关键词：板材渐进成形(ISF)；回弹预测；有限元法(FEM)；人工神经网络(ANN)；粒子群优化(PSO)算法 
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