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Abstract: A vision-based color analysis system was developed for rapid estimation of copper content in the secondary copper 
smelting process. Firstly, cross section images of secondary copper samples were captured by the designed vision system. After the 
preprocessing and segmenting procedures, the images were selected according to their grayscale standard deviations of pixels and 
percentages of edge pixels in the luminance component. The selected images were then used to extract the information of the 
improved color vector angles, from which the copper content estimation model was developed based on the least squares support 
vector regression (LSSVR) method. For comparison, three additional LSSVR models, namely, only with sample selection, only with 
improved color vector angle, without sample selection or improved color vector angle, were developed. In addition, two exponential 
models, namely, with sample selection, without sample selection, were developed. Experimental results indicate that the proposed 
method is more effective for improving the copper content estimation accuracy, particularly when the sample size is small. 
Key words: secondary copper; copper content estimation; sample selection; color vector angle; least squares support vector 
regression 
                                                                                                             
 
 
1 Introduction 
 

Copper recovery from wastes is more economically 
appealing than copper production from primary sources 
[1]. Reusing waste copper not only reduces the cost of 
production, but also saves the natural resources and 
energy of the earth from a big stand of view. Therefore, 
the interest in copper recycling technologies has been 
steadily increasing in recent years [2−8]. The final 
product of copper recovery process is usually called 
secondary copper in smelting industry. However, 
measuring the content of the secondary copper mainly 
relies on the expensive spectrograph through an off-line 
manner, which may introduce a significant measurement 
delay. In this delayed period, the melting process will not 
stop keeping the molten copper at a specified 
temperature range until the desired measurement result 
of copper content is reported. Therefore, much energy is 
wasted in this period. In addition, spectrograph machines 
may not work well in a dusty on-site condition with high 
temperature, which may introduce extra difficulties for 

measuring copper content. Overall, much fuel and energy 
have been wasted in traditional spectrograph approach. 
To overcome these problems, a rapid copper content 
measurement system is highly desired. 

Like other quality monitoring problems [9], a key 
step of constructing an in-situ copper content 
measurement system is to select fast, reliable, and 
low-cost sensors. With the development of digital image 
acquisition and processing methods, vision-based 
techniques have become more and more popular [10−14]. 
The idea of implementing rapid secondary copper 
content measurement using the vision-based system is 
innovated for several reasons. Firstly, The vision-based 
system has been successfully adopted for copper quality 
estimation [15], as well as in other industrial applications 
[16−18]. Secondly, the copper content prediction at the 
smelting location (in-situ) is usually estimated by skilled 
workers based on their accumulated experiences. The 
human experts make judgments on the copper product 
contents with their direct visual observations. Therefore, 
it is possible to use a vision system to estimate the 
copper content. 
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Previously, OESTREICH et al [12] demonstrated 
the use of color features for real-time mineral quality 
estimation. Recently, color features have been used in 
quality evaluation for fruits [10] , beef [19] and other 
foods. KIM et al [15] suggested that the hue intensity 
may reflect the composition difference of Zn, Sn or Al in 
the Cu binary alloys. An exponential equation model was 
used for composition estimation of Cu−Zn, Cu−Sn and 
Cu−Al alloys by measuring the average hue intensity. 
However, defects on the surface of a copper sample may 
affect the average values of hue intensity, which may 
result in a significant error of the quality estimation 
model. Therefore, a sample selection strategy by defect 
detection can be used to improve the accuracy of the 
estimation model. Besides, since the composition of 
secondary copper is more complex than ideal Cu binary 
alloys, the exponential equation model may not function 
well to model the relationship between color feature and 
copper content of secondary copper. 

In the present work, we develop a copper content 
estimation model based on color analysis, where the 
development of the copper content estimation model is 
treated as a supervised regression problem. Firstly, mean 
filtering is employed to remove noise and the region of 
interest (ROI) method is applied to segmenting copper 
images from the background. Secondly, the Canny edge 
detection technique is combined with luminance standard 
deviation for detecting the defects and selecting 
appropriate modeling sample images, followed by the 
extraction of improved color vector angle. Finally, a 
LSSVR model is developed to correlate the copper 
contents and the extracted color vector angles. 
 
2 Vision-based system 
 

The proposed vision-based system consists of two 
main parts: the hardware and the software. The hardware 
is an image acquisition system, which captures images of 
copper samples in the smelting process and transmits the 
images to the computer. The software is specially 

developed to analyze the captured copper images and 
estimate the copper content of the testing secondary 
copper samples. The vision-based copper content 
estimation system has been established both in the lab 
and in-situ. The major tasks performed by the system are 
shown in Fig. 1, which are copper image acquisition, 
defect detection, color feature extraction and copper 
content estimation. 

 
2.1 System hardware 

The image acquisition system consists of a color 
assessment cabinet with D65 light sources, a 3CCD color 
camera and an industrial computer. The cabinet is 
applied to keeping dust away and providing a constant 
lighting condition. D65 (PHILIPS TLD 18W/965) is a 
kind of artificial daylights acknowledged by CIE, whose 
color temperature is 6500 K. An industrial 3CCD 
progressive scan RGB color camera (JAI, model 
CV-M9GE 3×1/3′′, 1024×768 active pixels) mounted 
with a 15 mm lens (FUJINON, model TF15DA-8) is 
applied to capturing the images of secondary copper 
samples. The copper images are transmitted from the 
camera to the industrial computer through Gigabit 
Ethernet. Compared with a traditional single CCD color 
camera, the 3CCD color camera is more precise and 
reliable, which could capture more accurate color 
information from the secondary copper samples. In 
addition, the copper samples are fixed by a sample 
holder to ensure that every image has the same shooting 
angle and the illumination angle shown in Fig. 2. 
Especially, the shooting angle is adjusted to reduce the 
effects of reflection and ensure that the image defect is 
not derived from the illumination. The photograph 
details of the proposed vision system are presented in  
Fig. 2. 
 
2.2 System software 

The developed software consists of two main parts: 
a user interactive interface and a copper content 
estimation program. The user interface is written by  

 

 
Fig. 1 Schematic diagram of copper content estimation system: (a) Model development; (b) Copper content estimation 



Hong-wei ZHANG, et al/Trans. Nonferrous Met. Soc. China 24(2014) 2665−2676 

 

2667
 
LabVIEW 2011, which can be used to modify the 
parameters of both the 3CCD color digital camera and 
the copper content estimation model, as shown in the 
right part of Fig. 2. 

The copper content estimation program is written by 
MATLAB 2011b, which is used to extract color features 
and uses the color features to estimate copper content of 
a secondary copper sample. To improve estimation 
accuracy, a sample selection strategy of copper images is 
adopted before color feature extraction. As shown in  
Fig. 3, the interaction interface is intuitive and easy to 
operate. The details of the image analysis algorithm 
mentioned above will be elaborated in Section 3 shortly. 

 
2.3 Secondary copper samples 

The secondary copper samples used in this study 
were collected from Ningbo Jintian Copper (Group) Co., 
Ltd in China, some of which are shown in Fig. 4.  

Because the cross section area of the copper sample is 
rarely affected by the effect of oxidation, it is used for 
image acquisition and image analysis. 
 
3 Image processing and feature extraction 
 
3.1 Preprocessing and image segmentation 

The secondary copper samples were collected from 
practical products of the industry, so the stochastic noise 
and defects in the copper image are ineluctable. 
Therefore, the copper images should be preprocessed 
before color feature extraction to make sure that the 
correct image features can be extracted. 

To smooth the images, median filtering method is 
applied to removing the noise in the images. Furthermore, 
since the background information cannot be used for 
copper content estimation, the copper sample region 
must be identified and segmented from the whole image 

 

 
Fig. 2 Photograph of vision-based copper content estimation system 

 

 

Fig. 3 Details of interaction interface 



Hong-wei ZHANG, et al/Trans. Nonferrous Met. Soc. China 24(2014) 2665−2676 

 

2668 
 
 

 

Fig. 4 Photograph of secondary copper samples 
 

before color feature extraction. There are many 
traditional image segmenting methods, such as 
edge-based methods and area-based methods, which 
have been applied in many applications. However, none 
of these techniques could solve image segmentation 
problems in all applications. Recently, machine learning 
technique has been successfully applied to the image 
segmentation problems. However, machine learning 
methods are too complicated and time-consuming, 
although they are generally better than traditional image 
segmentation methods. 

In this work, the region of interest (ROI) method 
will be used. Different from aforementioned methods, 
ROI is a fast image segmentation method because it just 
sets coordinates of the interested region. ROI method is 
especially suitable to segment the objects with certain 
and constant location in the images. Because the 
locations of the camera and the sample holder are fixed 
in the color assessment cabinet, the region coordinates of 
the copper samples are constant in every captured  
copper image. Therefore, the ROI method can ensure the 

segmentation is absolutely correct because the region is 
selected by users. In addition, ROI method is simple to 
implement and can greatly improve the computing speed. 
Based on the above reasons, the ROI method is adopted 
to segmenting the cross section area from the original 
copper image in the present work. 

The ROI method is performed by simply setting the 
coordinates of a rectangular region in the captured image. 
As shown in Fig. 5(b), the region labeled by a white 
rectangular (160×160) is the region of interest (ROI) in 
the cross section, which is a subset of the original image 
(1024×768). Figure 5(c) shows the ROI image 
segmented from Fig. 5(b). 

 
3.2 Defect detection for sample selection 

Data selection is an important issue because it 
determines which key information will be used in later 
steps. Poor results are generally obtained if the collected 
data are used without any selection. Due to the factors 
from both cutting tools and environmental conditions, 
some obvious defects such as scratches and speckles may 
appear in the cross section of copper sample occasionally. 
The defects might introduce incorrect color information, 
thus resulting in unwanted effects on the copper images. 
If an image with defect could be eliminated before model 
development, it will be helpful to ensuring the reliability 
of the developed model. Two typical defects in copper 
images can be seen in Fig. 6. 

The goal of the defect detection is to select copper 
samples for further color feature extraction as quickly as 
possible. Therefore, the rapidity is also important for 
defect detection algorithm. There are many image defect 
detection methods: gray level co-occurrence matrices 
(GLCM), texture based methods, wavelets and so forth. 
These methods could be largely classified into three 

 

 

Fig. 5 Schematic diagram of preprocessing, segmentation and samples selection algorithm 
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Fig. 6 Comparison of a normal sample and two representative defect samples: (a) Normal sample; (b) Scratch defect sample;      
(c) Speckle defect sample 
 
main approaches: statistical, structural and transform- 
based methods. Regarding the statistical methods, the 
simplest feature is the first-order statistic related to the 
intensity levels histogram such as mean and median. 
However, the first-order statistic does not give any 
insights into the possible defect differences in an image, 
because they do not extract any information about the 
correlation of their intensities. When the intensity 
distribution has to be characterized, the second-order 
statistic is more suitable. Probably, the most well-known 
second-order statistic in image analysis is the GLCM 
method. But GLCM is not suitable here because the 
problem of the image rotation cannot be solved. Though 
wavelets method has been successfully applied to image 
defect detection, they are too complicated and time- 
consuming. Recently, texture based methods, especially 
those using local binary patterns (LBP) have been 
employed in many image classification system. LBP 
method was proposed by OJALA et al [20] and has been 
extensively explored by many other researchers [21]. But 
this method still cannot be used in this application 
because it is time-consuming. 

Considering the rapidity of the defect detection, 
Canny edge operator is a good choice, which has been 
successfully applied to surface quality detection for 
many years. This method is suitable for scratch defects, 
but fails for speckle defect detection. The standard 
deviation, as another second-order statistic, is quick and 
accurate for speckle defect, but is inaccurate for scratch 
defect detection. Therefore, these techniques cannot be 
directly applied to detecting speckle defects and scratch 
defects. The definitions and the mathematical equations 
of these defect detection techniques can be found in 
details in the previous works [19,20,22]. 

This work proposed a novel method to detect 
scratch defects and speckle defects, which combined 
pixels standard deviation and Canny edge detection. The 
proposed method could detect scratch defects and 
speckle defects based on Canny edge detection and 

standard deviation of pixel grayscale values, respectively. 
The method is simple yet rapid and accurate. Because 
scratch defects and speckle defects are reflected by the 
difference of luminance in the surface, the luminance 
components of captured color images are extracted 
before defect detection. Figure 7 shows the flow chart of 
the proposed algorithm for defect detection. 
 

 

Fig. 7 Flow chart of algorithm for defect detection 
 

Firstly, since the scratch defects look like many 
edges in the smooth cross section, the percentage of edge 
pixels is used to quantify the amount of scratch defects. 
Those copper samples with percentage of edge pixels 
more than specified threshold (25%) will be eliminated 
from the training data because they introduce too much 
noise to copper images. The Canny operator will be used 
to detect the edges in a grayscale image, in which two 
thresholds are used to detect strong and weak edges. It 
includes the weak edges in the output only if they are 
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connected to strong edges. As a result, the method is 
more robust considering noise, and more likely to detect 
true weak edges. In this work, Canny method is used to 
detect edges in the luminance component of the captured 
color copper images. Since luminance values of the 
speckle area are different from the smooth area, 
luminance component is also applied to calculating the 
standard deviation after the image is transformed from 
RGB color space to L×a×b color space. Luminance 
image could be calculated by the following equations: 
 

0.49020.30990.1999 '
0.1770 0.81230.0107 '
0.0000 0.01010.9899 '

X R
Y G
Z B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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            (1) 
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*
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L

Y Y Y Y

⎧ × − >⎪= ⎨
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   (2) 

 
where Y0 is 0.329, corresponding to the reference white 
point parameter in CIE D65 light sources. After the edge 
images are transformed from the luminance images 
according to the equation, the speckle defects could be 
easily detected based on the standard deviation of the 
luminance component image. Then the percentage of 
edge pixels, η, is calculated by the following equation: 
 

edge

all
100%

n
n

η = ×                             (3) 

 
where nedge and nall are the number of edge pixels and the 
total number of pixels in an edge image, respectively. 

Finally, copper images with luminance standard 
deviation less than 25 and percentage of edge pixels less 
than 25% (threshold) could pass the samples selection, 
which could be used for further color feature extraction. 
 
3.3 Color feature extraction 

Depending upon the properties of copper, the 
copper samples exhibit different colors. Therefore, color 
is an important indicator for content estimation. 
Currently, skilled workers estimate the copper content of 
the secondary copper products in-situ, here, the 
mathematical regression or classification model is to be 
developed for content estimation. Color information can 
be represented by color histograms, RGB, hue- 
saturation-intensity (HSI), CIE L×a×b, color vector angle 
and so forth. Each color space interprets and models 
color in a particular way. No single-color space is 
panacea for all industrial applications. The HSI and CIE 
L×a×b color spaces are usually applied for color analysis 
where only two components exist in the color space. In 
particular, the hue intensity has been successfully applied 
to copper content estimation for copper binary alloys 
[15]. However, the color information in saturation 

component is not used for model development without 
some detailed interpretations, which makes it difficult to 
decide which color component could be used for color 
extraction. The color vector angle (CVA) has been used 
in commercial television broadcasting to calibrate color 
video cameras. A critical concern is that it uses one 
component to qualify color information, which is 
suitable for the rapid computing. Moreover, the color 
vector angle (θ) has been proven to be an excellent 
measure of the subtle color changes resulting from 
differences in mineral concentrations. The traditional 
color vector angle can be calculated using the equations 
below [12]: 
 

0.877 (0.701 0.587 0.114 )RC R G B′ ′ ′= × − −         (4) 
 

0.493 ( 0.299 0.587 0.886 )BC R G B′ ′ ′= − × − − +      (5) 
 

arctan( / )R BC Cθ =                     ( 6 ) 
 
where R', G', B' represent the pixel grayscale values of 
each R'G'B' triplet, respectively. 

Our investigations have led us to conclude that 
every color quantization must be adjusted for a practical 
application. Figure 8 shows the color distribution (the 
little cubes) of standard copper map in MATLAB, which 
represents the common copper color. As we can see from 
the color distribution, the common copper color is not 
symmetric around the central black line, resulting in the 
similar traditional color vector angle of the common 
copper colors. Because the traditional color vector angle 
is a vector angle in the color cube starting from the 
viewpoint (0, 0, 0), if the viewpoint could be transformed 
properly, the color vector angles of copper colors may be 
more distinguishable from each other. As can be 
observed from Fig. 9, the real copper colors are also not 
symmetric a little around the central black line, which 
will lead it to be difficult to be distinguished from 
traditional color vector angles of secondary copper colors. 
Therefore, we propose a transformed color vector angle 
to distinguish the slight color differences of copper 
sample colors, which is formulated as follows: 
 

 
Fig. 8 Color distribution of standard copper map in color cube 
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Fig. 9 Color distribution of secondary copper samples in color 
cube 
 

0.877 [0.701 ( ' 5)RC R= × × − −  
0.587 ' 0.114 ( ' 4.5)]G B− × +                  (7) 

 
0.493 [ 0.299 ( ' 5)BC R= − × − × − −  

0.587 ' 0.886 ( ' 4.5)]G B+ × +                (8) 
 

arctan( / )R BC Cθ =                      (9) 
 

The offset values in Eqs. (7) and (8) are got by 
repeating trials and tests. Transformed by Eqs. (7−9), the 
colors of the secondary copper samples are symmetric 
around transformed center line. For intuitive 
comparisons, both the traditional color vector angle and 
transformed color vector angle are used to quantify the 
color of the copper color map in MATLAB as shown in 
Fig. 10. As can be seen from the figures, the improved 
color vector angles have better ability to measure the 
subtle color changes than traditional color vector. 
 

 
Fig. 10 Comparison of traditional and transformed color vector 
angle: (a) Copper color map in MATLAB; (b) Traditional color 
vector angle; (c) Transformed color vector angle 
 

The 3CCD digital camera outputs the RGB color 
signals for each pixel, which is digitized into an eight-bit 
value between 0 and 255. Considering the good color 
consistency in the selected copper image, the improved 
color vector angle of the pixels in the image will be 
represented by averaged color vector angle of the 

segmented copper image. Then the copper content could 
be estimated by comparing the averaged color vector 
angle to the developed copper content estimation model. 
 
4 Copper content estimation model 
 

In this section, the copper content estimation model 
is to be developed. A wide variety of strategies have been 
proposed in literatures to develop the regression 
estimation model depending on the level of a priori 
knowledge of the process. There are two main strategies 
to build an estimation model: mechanistic modeling and 
machine learning modeling such as neural networks, 
support vector machine (SVM) and hybrid methods. Due 
to the complicated nonlinear relation between the color 
feature and copper content of the secondary copper, it is 
difficult to build an accurate mechanistic model. 

Recently, an exponential function model was 
proposed by KIM et al [15] for composition estimation 
of Cu−Zn, Cu−Sn and Cu−Al alloys. The exponential 
model can be formulated as follows: 
 

0 exp xy y A
t

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

                        (10) 
 
where x is the composition, y is the hue intensity, y0 is 
the offset, A is the amplitude and t is a damping constant. 
For convenience, the exponential model is usually 
transformed to an equivalent logarithm formula, whose 
dependent variable is the composition. Through 
transformation, the logarithmic copper content 
estimation model is formulated as follows: 
 

0lg
x x

y t
A
−⎛ ⎞= − ⎜ ⎟

⎝ ⎠
                          (11) 

 
where x is the hue intensity, y is the content, x0 represents 
the offset, A is the amplitude and t represents the 
damping constant. 

However, the secondary copper is different from 
ideal Cu binary alloys because copper has more 
complicated compositions. The exponential model may 
not work well for copper content estimation of the 
secondary copper. For comparison purpose, the 
exponential model will be used in following 
experiments. 

In the catalog of machine learning modeling, neural 
networks, support vector regression (SVR) and LSSVR 
are usually used in practice. From a theoretical view, 
SVR and LSSVR are expected to perform better than 
neural networks, especially when the sample size is small. 
In our situation, the number of samples obtained from 
the Jintian Copper Group is limited due to their strict 
limits and regulations of material management. 
Therefore, the small sample size problem must be 
concerned for the model structure selection. Generally, 
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we handle this problem with SVM and LSSVM. 
SVR is a powerful tool for small size sample 

learning, which was developed based on sophisticated 
risk theory [22]. Due to its theoretical foundations, SVR 
exhibits better generalization performance and can work 
well under limited training data samples, which is in the 
exact situation in the study [23]. This is because the 
number of collected secondary copper samples is limited 
due to the strict material management rule of Ningbo 
Jintian Copper (group) Co., Ltd. However, the modeling 
efficiency of SVR is not very competitive since it 
requires a quadratic programming optimization. The 
efficiency of SVR can be greatly improved by LSSVR 
because the complex optimization step is avoided, 
instead, only a series of linear equations should be solved 
[24]. In this work, the LSSVR model is used to model 
the relationship between copper contents and color 
vector angles. 

Given the training data sample (xi, yi)i=1,…,n, where n 
is the size of sample, xi (i=1, …, n) are color vector 
angles as the input, and yi (i=1, …, n) are the available 
corresponding copper content values as the output. Given 
regression function y(x)=wTφ(x)+b, where w is the factor 
vector, b is the error vector. 

The regression problem is expressed as 
 

T 2

1

1min ( , , ) , 1, ,
2 2

n

i
i

C i n
=

= + =∑J w b e w w e L       (12) 

 
Subjected to equality constraints, it yields 

 
T( ) ( ) , 1, ,i i i ix x i nϕ= = + + =y y w b e L          (13) 

 
where ei (i=1, …, n) are the random errors, C is the 
parameter of standardization and wTw is used to   
control the model complexity. To solve the optimization 

problem, Lagrange function and Lagrange multipliers αi 
are introduced as follows: 

T 2

1

1( , , , )
2 2

n

i
i

CL
=

= + −∑w b e α w w e  

T

1
{ ( ) }, 1, ,

n

i i i
i

x i n
=

+ + − =∑α w b e y Lϕ        (14) 

Solving the Karush−Kuhn−Tucker (KKT) 
optimization condition, the result of Eq. (13) could be 
transferred to a series of linear equations. According to 
Mercer’s theorem, the resulting LSSVR model could be 
formulated as 
 

T

1
ˆ( ) ( ) ( , ) , 1, ,

n

i i
i

K x x i nα
=

= + = + =∑y x w x b b Lϕ   (15) 

 
where αi (i=1, …, n) are the coefficients corresponding 
to each training data, ˆ ( )xy  is the estimation function of 
the LSSVM model and K(xi, x) is the Kernel function 
which satisfies Mercer condition. There are a lot of 
Kernel functions, such as the linear function, the 
polynomial function, the radial basic function and the 
multi-layer perception function. In this research, the 
radial basic function 2 2

2( , ) exp{ / }i ix x σ= − −K x x is 
adopted. Once the LSSVR model is developed, each 
testing secondary copper sample could be estimated for 
copper content. For a new color vector angle data sample 
xnew, the estimated output variable of LSSVR could be 
calculated as: 
 

new new
1

ˆ( ) ( , ) , 1, ,
n

i i
i

x x x i n
=

= + =∑y α K b L         (16) 

 
The training and testing process of the 

LSSVR-based copper content estimation model can be 
seen in Figs. 11(a) and (b), respectively. 

 

 
Fig. 11 Training and testing flowchart of LSSVR model: (a) Training process; (b) Testing process 
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5 Experiments and discussion 
 

In this section, an experiment is provided to test the 
performance of the vision-based copper content 
estimation system. The rapidity and accuracy of the 
proposed copper content estimation model are evaluated 
in the experiments, which verify the proposed sample 
selection strategy and LSSVR model structure. At the 
same time, the LSSVR models without sample selection 
strategy, the exponential model with sample selection 
strategy and the exponential model without sample 
selection strategy are also compared in the experiments. 
Precisely, rapidity is evaluated by training time of the 
developed models. The estimation accuracy is evaluated 
by the root mean square error (RMSE), which is defined 
as follows:  

( )
test 2

test
test 1

1 ˆRMSE , 1,2, ,
n

i i
i

y y i n
n =

= − =∑ L      (17) 
 
where ntest is the number of testing image samples, yi and 
ˆiy  are real and estimation values, respectively. 

In addition, the recognition accuracy of defect 
samples (ADSR) is also calculated by Eq. (18) to 
evaluate the ability of defect detection:  

r

defect
ADSR 100%

n
n

= ×                       (18) 
 
where nr is the number of samples with defects 
recognized by samples selection strategy; ndefect 
represents the number of samples with defects in practice. 
The MATLAB software was used for model analysis in 
the experiment, and the configuration of the computer is 
listed as follows: OS: Windows 7(32 bit); CPU: Intel 
Core i3-2350M; RAM: 4 GB; MATLAB version: 2011b. 
 
5.1 Samples preparation 

There are 64 representative secondary copper 
samples in the experiment, which were collected from 
Ningbo Jintian Copper (group) Co., Ltd, China. The 
copper images were captured by the image acquisition 
system, which is mentioned in Section 2.1. For 
comparison of the estimation accuracy with spectrograph 
in the off-line manner, copper contents of all samples 
were measured in advance by a spectrograph in the 
laboratory. 

In this experiment, 32 copper images (image 1−32) 
were randomly selected as the training date, while the 
other 32 images (image 33−64) were selected as the 
testing data, which were used to test the estimation 
accuracy and rapidity of the developed models. 
 
5.2 Preprocessing and sample selection by defect 

detection 
Before defect detection, the preprocessing was 

necessary to remove the noise in the captured copper 
images. A 3×3 median filter was applied in the 
experiment. Besides, the ROI segmentation technique 
was used to segment the copper region from the 
background. 

The defect was analyzed in the luminance 
component of the segmented images according to the 
procedure presented in Section 3.2. Firstly, the 
luminance components of the segmented images were 
transformed from RGB color space using Eqs. (1) and 
(2). The standard deviations of luminance images could 
be easily calculated. Then those images whose standard 
deviation values were less than 25 were selected for 
Canny edge detection. The threshold values of a Canny 
operator usually affect the edge detection result, but there 
is no unified threshold selection method. Generally, the 
thresholds are selected according to the accurate edge 
detection result. Through trail and error, the low 
threshold and high threshold of the Canny operator are 
set to be 0 and 0.43, respectively. The percentages of 
edge pixels in the edge image were calculated using   
Eq. (3). Finally, the images whose percentage is lower 
than 25% were used to develop the copper content 
estimation model. 

For 64 segmented copper images (images 1−64), the 
time and recognition accuracy of the above defect 
detection method are listed in Table 1. Besides, the time 
and recognition accuracy of LBP method for 64 images 
are also listed in Table 1 for comparisons. The      
rotation−invariant−uniform pattern riu2

,P RLBP  is used in 
the experiment, whose parameter P and parameter R are 
16 and 2, respectively. As can be observed in Table 1, the 
proposed defect detection method has the same accuracy 
as LBP method; however, the rapidity performance is 
much better (1.8722 s compared to 23.6498 s). Therefore, 
the proposed defect detection method is more suitable for 
sample selection due to its rapidity and accuracy. 
 
Table 1 Comparison of LBP method and proposed defect 
detection method 

Method ADSR/% Time/s 
Std & edge based method 100 1.8722 

LBP based method 100 23.6498 
 

Figure 12 shows the luminance standard deviations 
and edge percentages of all copper images. As can be 
seen in Fig. 12, the symbol ‘*’ and the symbol ‘o’ 
represent the calculated luminance standard deviations 
and edge percentage values, respectively. The straight 
lines represent the defect detection thresholds. If the 
luminance standard deviation exceeds 25 or the edge 
percentage exceeds 25%, the corresponding copper 
image will be recognized as defect sample. It could be 
observed from Fig.12 that there are four detect samples 
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in the training data and one defect sample in the testing 
data. Therefore, the samples without defects can be 
selected to develop the proposed copper estimation 
models. 
 

 
Fig. 12 Luminance standard deviations and edge percentage of 
all samples: (a) Luminance standard deviations of training 
images; (b) Luminance standard deviations of testing images; 
(c) Edge percentage of training images; (d) Edge percentage of 
testing images 
 
5.3 Color feature extraction and copper content 

estimation model development 
After defect detection, the transformed color vector 

angle is extracted from the selected image using Eqs. (7) 
and (8). In addition, the hue intensity proposed by KIM 
et al [15] and the traditional color vector angle are also 
extracted. 

Six copper content estimation models are developed 
for comparison purpose. Model 1 is the proposed LSSVR 
model with sample selection strategy and transformed 
color vector angle. Model 2 is the LSSVR model with 
only the sample selection strategy. Model 3 is the 
LSSVR model with only the transformed color vector 

angle. Model 4 is the LSSVR model without sample 
selection strategy and the transformed color vector angle. 
Model 5 is the hue-based logarithm model with sample 
selection strategy. Model 6 is the original exponential 
model proposed by KIM et al [15]. 

The LSSVR models are trained in a supervised 
learning manner based on the color vector angle data and 
the corresponding copper content data. Thus, several 
parameters of model should be determined first. There 
are also many parameter optimization methods to 
improve the estimation ability of LSSVR models. 
However, parameter selection for LSSVR models is not 
the scope of this article. For comparison, the proposed 
LSSVR model and other three LSSVR models use the 
same parameters, so local optimal parameters is enough 
and can be selected by repeating experiment. In this 
experiment, the parameter C and the Kernel width 
parameters σ of LSSVR model described in Section 4 are 
randomly chosen as 10 and 0.2, respectively. For 
exponential models, the parameters x0, A and t are 
recognized by the nonlinear least squares method. 

It could be obviously observed from Fig. 13 that the 
estimation results of the LSSVR model with sample 
selection strategy and transformed color vector angle are 
in good agreement with the results given by the 
spectrograph analysis. In addition, the detailed testing 
results of six models are listed in Table 2. 
 

 
Fig. 13 Estimation result of Model 1 
 
Table 2 Results comparison of six models with different 
algorithms 

Model RMSE ADSR/% Time/s 

Model 1 0.7274 100 <0.00001 

Model 2 0.7296 100 <0.00001 

Model 3 0.8481 100 <0.00001 

Model 4 0.8590 − <0.00001 

Model 5 18.3702 100 <0.00001 

Model 6 18.5349 − <0.00001 
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As can be seen from the test results in Table 2, 
Model 1 is the best model according to the criterion of 
RMSE, ADSR and rapidity. It indicates that the LSSVR 
model combined with the sample selection strategy and 
the transformed color vector angle can effectively 
estimate copper contents for secondary copper samples. 
From the view of RMSE, Models 1−4 have smaller 
estimation errors than Models 5−6. It demonstrates that 
the LSSVR models are more suitable than logarithm 
models for copper content estimation. Because LSSVR 
models have better generalization ability than logarithm 
models, LSSVR models can estimate the copper content 
more accurately. In addition, color vector angle is an 
more excellent measure of the subtle color changes 
resulting from differences in the secondary copper. 
Therefore, the proposed model has smaller estimation 
error than the hue-based logarithm model used for Cu 
binary alloys. 

Moreover, the RMSE of Model 1 is smaller than 
that of Model 2 or Model 3. It indicates that the 
combination of the sample selection strategy and the 
transformed color vector angle is better than the 
individual improvement in sample selection or color 
vector angle. Furthermore, both Model 2 and Model 3 
are better than Model 4. It indicates that both sample 
selection strategy and transformed color vector angle can 
improve the copper content estimation accuracy. The 
RMSE of Model 5 is slightly smaller than that of Model 
6. It indicates that the samples selection strategy is also 
helpful to improving the estimation accuracy of the 
hue-based exponential model. 

Considering ADSR for testing images, Model 1 and 
Model 2 are able to recognize defect samples in testing 
data. Therefore, the estimation accuracy of Model 1 or 
Model 2 is smaller than that of Model 3 or Model 4 
because incorrect data had been eliminated accurately by 
the proposed samples selection strategy. 

Considering the rapidity criterion, all the copper 
content estimation models are time-effective compared to 
the time delay caused by spectrograph in off-line manner 
which is usually more than 30 min. It indicates that the 
vision-based copper content estimation system is more 
rapid than the traditional spectrograph analysis. 

Above all, the LSSVR model with samples 
selection strategy and transformed color vector angle is 
the most suitable method for copper content estimation, 
compared with other five models in the experiment. In 
addition, it is concluded that the proposed model can 
estimate the copper content for not only the secondary 
copper but also Cu binary alloys because the proposed 
model is flexible data-driven model. 
 
6 Conclusions 
 

In this study, a vision-based copper content 

estimation system has been proposed for rapid copper 
content estimation in secondary copper smelting industry. 
The LSSVR model is developed by using copper images 
and available copper content data. The images are 
captured from the cross-section area of copper samples 
in a color assessment cabinet. To improve the estimation 
rapidity, the ROI copper images are segmented from the 
original images and improved color vector angle is used 
to extract the color feature. To improve estimation 
accuracy, the training samples are selected by sample 
selection strategy. Then the transformed color vector 
angles are extracted from the copper images. Finally, the 
LSSVR model is developed by the color vector angles of 
selected images and available content values. The 
experiments and comparative study demonstrate that the 
proposed model is more suitable for copper content 
estimation than other five methods. 
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摘  要：针对废杂铜再生熔炼过程中铜含量指标离线检测时滞大的问题，提出一个基于机器视觉的铜含量快速检

测系统。首先，使用 3CCD 彩色相机获取再生铜样本的横截面图像。然后，利用图像亮度标准差和边缘像素百分

比这两个特征筛选建模样本。改进了颜色向量角，并提取建模铜样本的颜色向量角。最后，利用改进的颜色向量

角和实测铜含量数据建立一个基于最小二乘支持向量机的铜含量估计模型。为了对比，如下铜含量最小二乘支持

向量回归模型也被建立: 1)仅使用样本筛选方法; 2) 仅改进颜色向量角；3) 不使用样本筛选方法和改进的颜色向

量角。另外，还分别建立了使用样本筛选方法和不使用样本筛选方法的两个指数函数铜含量回归模型。实验结果

表明，同时使用样本筛选方法和改进颜色向量角的最小二乘支持向量回归模型具有最高的估计准确度，尤其是当

建模样本数目较少的时候。 

关键词：再生铜；铜含量估计；样本筛选；颜色向量角；最小二乘支持向量回归 
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