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Abstract: Considering both the effects of the interfacial normal velocity dependence of solute segregation and the local 
nonequilibrium solute diffusion, an extended free dendritic growth model was analyzed. Compared with the predictions from the 
dendritic model with isosolutal interface assumption, the transition from solutal dendrite to thermal dendrite moves to higher 
undercoolings, i.e., the region of undercoolings with solute controlled growth is extended. At high undercoolings, the transition from 
the mainly thermal-controlled growth to the purely thermal-controlled growth is not sharp as predicted by the isosolute model, but 
occurs in a range of undercooling, due to both the effects of the interfacial normal velocity dependence of solute segregation and the 
local nonequilibrium solute diffusion. Model test indicates that the present model can give a satisfactory agreement with the available 
experimental data for the Ni−0.7% B (mole fraction) alloy. 
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1 Introduction 
 

In past decades, numerous free dendritic growth 
models have been established, which include phase field 
models [1−3], models in the framwork of microscopic 
solvability theory [4−6] and models based on Ivantsov 
approach [7−21]. Phase field models adopt an order 
parameter, i.e., phase-field variable φ to describe the 
thermodynamic state of a local volume. This approach 
does not require tracking the solid−liquid interface and 
describes dynamical phenomena at the interface and in 
bulk phases through a single formalism. Microscopic 
solvability theory formulates dendritic growth problem 
as a single integro-differential equation and solves it 
without further hypotheses. The anisotropies of the 
interfacial energy and interfacial kinetics were taken into 
account, successfully. However, both of the phase field 
theory and microscopic solvability theory are very 
complicated, mathematically. It is not easy to be used for 
them, in practice. In contrast, the series of models based 
on Ivantsov approach received wide acceptance from 

materials scientists, due to its relative simplicity as well 
as the ability to describe the solidification with dendritic 
morphology. 

During steady-state free dendritic growth, the 
paraboloid of revolution is a good approximation for the 
dendrite tip shape [22]. Based on this assumption, 
IVANTSOV [7,8] first obtained the exact solutions of the 
classical Fick diffusion equations for solute and thermal 
diffusions in bulk liquids. Subsequently, a series of free 
dendritic growth models were proposed by adopting the 
Ivanstov results, such as the well-known BCT     
model [12], the models developed by GALENKO and 
DANILOV [13,14] and SOBOLEV [15,16]. In BCT 
model, the thermodynamic driving force, the kinetic 
undercooling and Aziz’s solute trapping model [23] were 
introduced to describe high Peclet conditions. However, 
this model could only deal with the deviation from local 
equilibrium state at the solid−liquid interface. By 
introducing the local nonequilibrium diffusion model, the 
dendritic growth models developed by GALENKO and 
DANILOV [13,14] and SOBOLEV [15,16] could 
describe the local nonequilibrium state both at the 
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interface and in bulk liquids. Recently, WANG et al [20] 
further extended the series of models to concentrated 
multi-component alloys. In all of these models, however, 
it is assumed that the interface is isothermal and 
isosolutal. 

During steady-state growth, the normal velocity 
varies along the dendritic interface. This variation would 
lead to different solute partitioning along the interface 
and further lead to a nonisosolutal solid−liquid interface. 
It is also well known both from phase field and 
experiments, that the solute content in a dendritic 
structure has a typical appearance, i.e., high 
concentration along the stem and low concentration on 
both sides. Therefore, it is significant to analyze the 
effect of the interfacial normal velocity dependence of 
solute segregation on the dendritic solidification behavior. 
Recently, a generalized free dendritic growth model was 
developed by solving the classical Fick diffusion 
equation exactly under the boundary condition of 
nonisothermal and nonisosolutal interface [24]. However, 
the effect of local nonequilibrium solute diffusion in bulk 
liquid was not taken into account. In the present work, a 
relatively simple method was proposed to analyze both 
the effects of the interfacial normal velocity dependence 
of solute segregation and the local nonequilibrium solute 
diffusion. An experimental comparison with the available 
experimental data for the Ni−0.7%B (mole fraction) 
alloy was also made. 
 
2 Model 
 

In this section, two independent variables were 
introduced to describe the dendritic morphology during 
steady state solidification. Based on this interfacial 
morphology, the solute trapping model recently 
developed by LI and SOBOLEV [25] was outlined. Then 
taking into account the interfacial driving force, an 
interfacial response function was proposed, 
approximately. From this interfacial response function, 
the tip radius of curvature was derived. Finally, an 
extended free dendritic growth model was obtained for 
binary alloys, which could deal with both the interfacial 
normal velocity dependence of solute segregation and the 
local nonequilibrium solute diffusion. 
 
2.1 Extended solute trapping model 

During steady-state solidification, the dendritic 
morphology could be approximated by a paraboloid of 
revolution [22]. For describing the interfacial 
morphology with the paraboloid of revolution uniquely, 
it is required mathematically to introduce the radius of 
curvature (R) at the dendrite tip. This parameter has been 
widely adopted in previous dendritic models [9−21]. In 
the present work, taking into account the interfacial 

normal velocity dependence of solute partitioning, it is 
not enough to only adopt the parameter R. Here, an angle 
(θ) is introduced. The normal direction at an interface 
element makes the angle θ with respect to the growth 
axis. For steady-state growth at a given interface 
migration velocity V (i.e., tip velocity), there is a critical 
value of the angle θ. This critical angle θ, i.e., the 
maximum angle, is marked by θmax. For θ≥θmax, the 
solid−liquid interface becomes unstable and the 
secondary dendrite arm and necking phenomenon may 
appear. The present model focuses on the range of 
0≤θ≤θmax, which corresponds to the shape preserving part 
of the dendritic interface. Therefore, considering the 
interfacial normal velocity dependence of solute 
segregation, one should use both the parameter R and the 
angle θmax to describe the steady-state shape and the 
boundary. 

Along the dendritic interface from the tip (θ=0) to 
the root (θ=θmax), the normal velocity Vn decreases, 
which could be described by Vn(θ)=Vcosθ due to the 
shape preserving condition. The normal velocity Vn(θ) 
can be regarded as the effective velocity which controls 
the solute redistribution at the interface element marked 
by angle θ. Introducing this dependence of Vn on θ into 
the solute trapping model proposed by SOBOLEV 
[15,16], the solute partition coefficient K could be further 
described as [25] 
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where KE is the equilibrium partition coefficient, VDI is 
the interface diffusive speed and VD is the bulk liquid 
diffusive speed. 

In order to analyze the effect of the interfacial 
normal velocity dependence of solute segregation on the 
dendritic solidification behavior, it is useful to calculate 
the average of partition coefficient )(VK  from the tip 
to the root of the dendrite. For the interface 
approximated by a paraboloid of revolution, )(VK  
could be given as follows [25]: 
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2.2 Interfacial response function 

In previous models, the driving force on 
solidification, i.e., the effective driving free energy 
∆GEFF was calculated with the values for liquid solute 
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concentration ( *
LC ) and solid solute concentration ( *

SC ) 
at the dendrite tip (θ=0), due to the isosolutal interface 
assumption [12−21]. In the present work, taking into 
account the dependence of K(V, θ) on θ, the interfacial 
composition is not constant. Therefore, as an 
approximation, the effective driving free energy ∆GEFF 
could be evaluated based on the average values of the 
interfacial solute concentration *

LC  and *
SC . 

Following the Galenko’s analysis based on the extended 
irreversible thermodynamics [26], the effective driving 
free energy ∆GEFF can be given as 
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where ∆μ1 and ∆μ2 are the chemical potential changes 
upon solidification for solvent and solute, respectively; 
Rg is the gas constant, and TI is the interfacial 
temperature, which is assumed to be constant along the 
interface. For sufficiently dilute alloys, the Henry’s law 
is valid. Thus, based on the analysis of BAKER and 
CAHN [27], ∆μ1 and ∆μ2 could be approximated by  
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where eq
LC  and eq

SC  are the equilibrium solute 
concentrations at the interface, for the temperature 

RI TT Δ+ . Here, the curvature correction is considered 
and RTΔ  is the curvature undercooling defined by 

RΓ /2  (Γ is the Gibbs−Thompson coefficient, R is the 
radius of curvature). 

For sufficiently dilute alloys, the linear liquidus and 
solidus line approximation is reasonable. Combining this 
linear approximation and Baker and Chan’s 
approximation [27], Eqs. (5) and (6), with Turnbull’s 
collision-limited growth law ∆GEFF/(RgTI)+V/V0=0 [28], 
one can obtain the interfacial response function as 
follows:  

RΓVCVmTT /2)( 0
*
LMI −−+= μ                (7) 

 
where TM is the melting point of pure solvent, μ0 is the 
kinetic coefficient defined by V0(KE−1)mE, V0 is the 
maximum crystallization velocity, mE is the equilibrium 
liquidus slope and m(V) is the kinetic liquidus slope 
given by 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−++−

−
=

D

2

EE

E )1()ln(1
1

)(
V
VK

K
KK

K
mVm , 

 Dmaxcos VV <θ                           (8) 

1
ln)(
E

EE

−
=

K
KmVm , Dmaxcos VV ≥θ                (9) 

 
In the present model, taking into account the 

interfacial normal velocity dependence of solute 
partitioning, the solid−liquid interface is nonisosolutal. 
Along the dendritic side from the tip to the root, the 
solute partition coefficient K(V, θ) decreases and the 
liquid solute concentration )(*

L θC  increases. Based on 
the Ivantsov treatment for solute diffusion [7,8], the 
average solute concentration along the interface *

LC  
could be approximated by 
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where C0 is the nominal composition of alloys, 
Pc=RV/(2DL) is the solutal Peclet number, DL is the 
solute diffusion coefficient in liquid and Iv is the 
Ivantsov function [7,8]. In addition, based on the 
Ivantsov approach for thermal diffusion, the interfacial 
temperature TI in the interfacial response function,    
Eq. (7), is given as follows, with the isothermal interface 
approximation, 
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where ∆Hf is the latent heat of fusion, cp is the specific 
heat capacity of liquid alloy, Pt=RV/(2aL) is the thermal 
Peclet number, aL is the thermal diffusivity in liquid and 
T∞ is the temperature of undercooled melt far from the tip. 
Combining Eqs. (7) and (12), one could describe the bath 
undercooling ∆T as 
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It should be noted that the Ivantsov results for the 

description of )(*
L θC  is adopted in the present 

treatment. Strictly speaking, the Ivantsov results are only 
suitable for the isosolutal interface condition. The 
present model provides an approximated method to 
analyze the effect of the interfacial normal velocity 
dependence of solute segregation. For more exact 
solution, the model given in Ref. [24] should be further 
extended. 
 
2.3 Tip radius of curvature 

Based on the marginal stability theory [29−34], 
adopting the planar interface response function (Eq. (7), 
in which the curvature undercooling 2Γ/R is removed), 
and combined with Langer and Muller−Krumbhaar 
approximation [35], one could describe the radius of 
curvature R as 
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where σ* is the stability constant (σ*≈1/4π2) and the 
parameters ξt and ξc are defined as follows: 
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Integrating Eq. (2) and Eqs. (7)−(18) gives the 
dendritic solidification behavior uniquely, such as the 
interfacial migration velocity V, the dendritic tip radius R, 
the profiles of the solute partition coefficient K(V, θ) and 
the liquid solute concentration )(*

L θC  along the 
interface as well as the average partition coefficient 

)(VK . 
 
3 Discussion and comparison with 

experiment 
 

Taking into account the interfacial normal velocity 
dependence of solute partitioning, the present model 
could describe the nonisosolutal nature of the solid− 
liquid interface. For making a comparison between the 
present model and the corresponding model with the 
assumption of isosolutal interface, i.e. Gelenko and 
Danilov model [13,14], Ni−0.7%B (mole fraction) alloy 
was adopted in model computations. The parameters 
used are listed in Table 1. The calculated results are 
shown in Figs. 1−3, including the interfacial migration 
velocity V, the dendritic tip radius R and the partition 
coefficient K as functions of the bath undercooling ∆T. 

In Fig. 1, four undercoolings, ∆T1, ∆T2, ∆T3 and ∆T4, 
are defined for the present model, which determine five 
ranges of bath undercooling ∆T. ∆T1 is the critical 
undercooling, at which the velocity V coincides with the 
critical velocity of absolute solute stability *

cV  [19]. At 
∆T<∆T1, the dendritic growth is mainly controlled by 
solute diffusion, and at ∆T=∆T1, the transition from 
mainly solute controlled growth to mainly thermal 
controlled growth occurs. As shown in Fig. 1, the range 2 
of ∆T is the transition region, and at ∆T=∆T2,       
this transition completes. ∆T2 is defined by the critical 

Table 1 Thermodynamic parameters for Ni−0.7%B (mole 
fraction) alloy used in model computations [13] 

Parameter Value 

Mole fraction of boron /% 0.7 

Melting point of pure Ni, TM/K 1726 

Specific heat of fusion, ∆Hf/(J·mol−1) 1.72×104 

Specific heat capacity, cp/(J·mol−1·K−1) 36.39 

Capillarity constant, Γ/(K·m) 3.42×10−7 

Diffusion coefficient, DL/(m2·s−1) 5.5×10−9 

Thermal diffusivity, aL/(m2·s−1) 8.5×10−6 

Interfacial diffusion speed, VDI(m·s−1) 16.2 

Diffusion speed in bulk liquid, VD/(m·s−1) 18.9 

Liquidus slope, mE/(K·%−1) −14.3 

Partition coefficient, kE 0.0155 

Kinetic coefficient, μ0/(m·s−1·K−1) 0.25 
 

 

Fig. 1 Interfacial migration velocity V vs bath undercooling ∆T 
predicted by isosolutal model [13,14] and present model 
(θmax=0.25π) for Ni−0.7%B alloy (mole fraction) 
 

 

Fig. 2 Tip radius of curvature vs bath undercooling predicted 
by isosolutal model [13,14] and present model for Ni−0.7%B 
alloy (For the present model two different values of θmax were 
adopted) 
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undercooling, at which the tip radius R attains its 
extreme point. When ∆T is larger than ∆T2, the tip radius 
R decreases monotonically with increasing ∆T (Fig. 2). 
∆T3 is the critical undercooling, at which the interfacial 
velocity V equals the bulk liquid diffusive velocity VD. 
And ∆T4 corresponds to a bath undercooling, at which 
the normal velocity Vn=VD at the dendrite root (θ=θmax), 
i.e., the dendritic growth velocity V=VD/cosθmax. It is 
noted that θmax=0.25π was used in Fig. 1 as an example. 

Under the condition that the interface velocity V is 
of the order or larger than the solute diffusion velocity 
VD, the solute diffusion is in local nonequilibrium. 
Taking into account the nonequilibrium nature of 
diffusion, the isosolutal model predicts that at V≥VD, 
complete solute trapping occurs (Fig. 3) and the 
transition at V=VD is sharp (Fig. 1). This indicates that 
the transition from mainly thermal controlled growth to 
purely thermal controlled growth is sharp. For the 
isosolutal model, these predictions are based on the 
assumption that the dendritic interface including the tip 
is isosolutal. In reality, however, it is obvious that during 
steady-state solidification, the normal velocity Vn is not 
constant along the dendritic interface. For solute 
redistribution at the solid−liquid interface, the normal 
velocity Vn is the decisive factor. Therefore, the 
solid−liquid interface is nonisosolutal. The present model 
provides an approach to deal with the effect of the 
interfacial normal velocity variation. As described by  
Fig. 3, at V=VD, i.e., ∆T=∆T3, the complete solute 
trapping (K=1) only occurs at the dendrite tip due to 
Vn<VD  at the other parts of the dendritic interface. With 
increasing ∆T, the interface velocity V increases and K=1  
 

 
Fig. 3 Partition coefficient as functions of bath undercooling 
predicted by isosolutal model [13,14] and present model for 
Ni−0.7%B alloy (For the present model, θmax=0.25π was 
adopted as an example. The insert shows the relationship 
between the interfacial migration velocity and the bath 
undercooling. The solid line is the result predicted by the 
present model with θmax=0.15π and the open circles denote the 
experimental data for Ni−0.7%B alloy [36]) 

occurs at the interface with more elements. When 
V=VD/cosθmax (∆T=∆T4), for the root of dendrite K=1 and 
thus the complete solute trapping achieves at the whole 
interface (0≤θ≤θmax). Therefore, considering the 
interfacial normal velocity dependence of solute 
partitioning, the transition to partitionless solidification is 
not sharp, but occurs in a range of ∆T. This transition is 
shown by the grey region in Figs. 1−3, i.e., the range 4 of 
∆T. At ∆T≥∆T4, purely thermal controlled growth occurs. 
Under this condition, the solidification behavior is the 
same as that for pure metals. 

Another effect of the interfacial normal velocity 
dependence of solute partitioning is the transition region 
of undercooling from mainly solute controlled growth to 
mainly thermal controlled growth (the range 2 of ∆T). As 
indicated by Figs. 1−3, the effect of the interfacial 
normal velocity dependence of solute partitioning leads 
to that the transition region moves to higher 
undercooling, i.e., the region with solute controlled 
growth is extended. This is because that the average 
partition coefficient is considered in the present model to 
deal with the effect of the nonisosolutal interface. Along 
the interface from the tip to the root, the partition 
coefficient K(V, θ) decreases as described by Eq. (1), 
since the normal velocity Vn decreases. Thus, the average 
partition coefficient is less than the partition coefficient 
at the dendrite tip (Fig. 3). This implies that the degree of 
average solute segregation is larger than that at the tip. 
Therefore, the undercooling region with solute- 
controlled growth is extended under the nonisosolutal 
interface condition. In addition, with increasing the 
interfacial region with steady-state growth marked by 
θmax, the solutal dendrite region of undercooling is 
further extended (Figs. 1−3) and thus the effect of the 
interfacial normal velocity dependence of solute 
partitioning is more significant. 

In order to further validate the present model, a 
comparison with the available experimental data for 
Ni−0.7%B alloy was made. The related values of the 
parameters used in the model computation are given in 
Table 1. The insert in Fig. 3 shows the data points from 
the electromagnetic levitation experiment [35] and the 
predicted dendritic growth velocity as a function of the 
bath undercooling ∆T for the present model. It is noted 
that θmax=0.15π was adopted as a fitting parameter to 
obtain a better description for the experiment results. As 
can be seen clearly, the present model gives an 
agreement with the experimental data. 

As indicated by Fig. 1, at V=VD/cosθmax (∆T=∆T4), 
the complete solute trapping occurs at the whole 
interface 0≤θ≤θmax with steady-state growth. And the 
transition to complete partitionless solidification is not 
sharp, but occurs in the range 4 of ∆T marked by the grey 
region. Thus, with increasing the value for θmax, the 
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transition region, i.e., the range 4 of ∆T is extended and 
the effect of the interfacial normal velocity dependence 
of solute partitioning is more significant. From the 
present experimental comparison, θmax with the value of 
0.15π is obtained as a fitting parameter. It is small and 
the corresponding transition region is also narrow with 
the value of 10 K (∆T4−∆T3). This can also be found 
from Fig. 2, in which the difference is not remarkable 
between the predictions from the isosolutal model and 
the present model with θmax=0.15π for the tip radius. 
Therefore, it implied that the effect of the interfacial 
normal velocity dependence of solute partitioning is 
relatively small for the Ni−0.7%B alloy. Furthermore, 
the present model can also describe the transition of 
growth mode from the power law to linear growth due to 
the narrow transition region. 

It should be stressed that the critical angle θmax was 
introduced into the present model to characterize the 
shape preserving part of dendritic interface during 
steady-state growth and the angle θmax was used as a 
fitting parameter in the present work. Strictly speaking, 
at different interfacial migration velocities V, the shape 
of interface is also different, and thus the values of R and 
θmax are variable. The relationship between V and R could 
be described by marginal stability theory (see Eqs. (14) 
and (15)). Also, there should be another relationship 
between V (R) and θmax. For a very large tip radius R, i.e., 
when the solid−liquid interface tends to planar one, θmax 
would be very small. In contrast, θmax could even reach 
π/2 if R is very small. This problem should be further 
studied. 
 
4 Conclusions 
 

1) A free dendritic growth model was proposed for 
binary alloys, which could deal with both the interfacial 
normal velocity dependence of solute partitioning and 
the local nonequilibrium solute diffusion. Numerical test 
indicates that the solutal dendrite region of undercooling 
is extended due to the effect of the interfacial normal 
velocity dependence of solute partitioning for the present 
model, compared with the isosolutal model. 

2) At high undercoolings, when the solidification 
velocity is of the order or larger than the solute diffusive 
velocity, the transition to diffusionless solidification is 
not sharp as predicted by the isosolute model, but occurs 
in a range of undercoolings. This is because that the 
present model considered both the effects of the 
interfacial normal velocity dependence of solute 
partitioning and the local nonequilibrium solute 
diffusion. 

3) With increasing the interfacial region with 
steady-state growth, the effect of the interfacial normal 
velocity dependence of solute segregation is more 

significant. Furthermore, it is also shown that the present 
model provides a satisfactory agreement with the 
available experimental data. 
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考虑界面法向速度变化所导致的 
界面非等溶质特性的自由枝晶生长模型 
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摘  要：在同时考虑溶质偏析的界面法向速度依赖性与局域非平衡溶质扩散的情况下，建立一个扩展的自由枝晶

生长模型。与假设等溶质界面的枝晶生长模型的预测相比，从溶质枝晶到热枝晶的转变发生在更高的过冷度，即

溶质控制生长发生在更宽的过冷度区域。在高过冷度区域，从热控制生长模式到纯热控制生长模式的转变没有等

溶质模型所预测的急剧，而是发生在一定范围的过冷度区域。这是由于溶质偏析的界面法向速度依赖性与局域非

平衡溶质扩散这两个因素共同作用的结果。模型测试表明：本模型能够对现有 Ni−0.7%B(摩尔分数)合金的实验数

据给出满意的描述。 

关键词：枝晶生长；界面非等溶质特性；建模；二元合金 

 (Edited by Xiang-qun LI) 

 
 


