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Abstract: Isothermal compression tests were conducted to predict the hot deformational flow stress behaviour of 2024Al-T3 alloy 

with respect to a wide range of strain rates (0.001−100 s−1), strains (0.1−0.5) and temperatures (573−773 K). The prediction 

capabilities of various constitutive models for 2024Al alloys and a recently developed constitutive model were evaluated using 

statistical parameters such as the average absolute relative error (AARE) and the correlation coefficient (R). Models recorded the 

lowest AARE (4.6%) and the highest correlation coefficient (R=0.99) were developed compared with the other models. Hence, this 

model can track the deformational behaviour of 2027Al-T3 alloy more accurately compared with other models throughout the entire 

processing domain investigated. 
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1 Introduction 
 

2024 aluminium alloys are used extensively within 

the aerospace industry to fabricate structural components 

such as aircraft fuselage and wing panels due to their 

high strength to mass ratio [1,2]. Finite element (FE) 

methods have been successfully used to analyze and 

optimize bulk metal deformation processes [3], metal 

machining processes [4,5] and solid state joining 

processing [6] of these aluminium alloys. During the 

development of a FE simulation, the constitutive model 

of the workpiece material was used as an input to 

simulate material deformation behaviour under specified 

loading conditions [7]. Therefore, the precision of the 

numerical simulation depends on how accurately the 

deformation behaviour of the material is represented by 

the constitutive model [8]. Usually, the constitutive 

model is a mathematical representation describing the 

relationship among flow stress, strain, strain rate and 

temperature [9]. 

Many constitutive models have been proposed or 

modified to describe the flow stress behaviour of 2024Al 

alloys over different ranges of temperatures and strain 

rates. Table 1 highlights previous research publications in 

this area. In terms of aluminium alloys, one of the 

earliest and most common constitutive models is the 

hyperbolic sine Arrhenius-type model proposed by 

ZENER and HOLLOMON [10], and SELLARS and 

TEGART [11]. SHEPPARD and JACKSON [12] 

performed hot compression and hot torsion tests to 

determine the flow stress behaviour of 2024Al alloy 

using this Arrhenius-type model. Hot torsion tests were 

conducted by CEPEDA-JIMENEZ et al [13] to 

determine the flow stress behaviour of 2024Al-T351 

alloy also using the Arrhenius-type model. More recently, 

HAO et al [14] used the Arrhenius-type model to 

establish the flow stress behaviour of 35%SiCp/2024 

aluminium metal matrix composite. A major 

disadvantage of the Arrhenius model is that the effect of 

strain is not considered. LIN et al [15] proposed a 

modified Arrhenius-type model with strain compensation 

to encapsulate the effect of strain to establish the flow 

stress behaviour of 42CrMO steel. 

The Johnson−Cook model is another example of a 

well-established constitutive model. JOHNSON and 

COOK [16] used their proposed model to determine the 

flow stress behaviour of 2024Al-T351 alloy by 

performing isothermal and adiabatic torsion tests. 

LESUER [17] performed high strain rate compression 

tests on 2024Al-T3 alloy using a split Hopkinson 

pressure bar (SPHB) system to determine new constants 

for the Johnson−Cook model. However, SPHB tests at 

different temperatures were not completed. SEIDT and 

GILAT [18] performed a number of tension, compression 

and torsions tests on 2024Al-T351 alloy test pieces at 
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Table 1 Highlight of previous research on developing constitutive models for 2024 aluminium alloys 

Material 
Temperature/ 

K 

Strain 

rate/s−1 
Model Constant Ref. 

2024Al 
533, 573, 

613, 653, 693 

0.008, 0.08, 

8, 80 







 


RT

Q
A n exp)][sinh(  α=0.016 MPa−1, 

n=4.27 

Q=148880 J/mol, 

ln A=19.6 s−1 
[12]  

2024Al-T3 
551, 588,  

633, 681, 740 

2.1, 4.5, 

9.6, 25.6 







 


RT

Q
A n exp)][sinh(  α=0.0103 MPa−1, 

n=6.1 

Q=179000 J/mol, 

ln A=31.36 s−1 [13]  

35%SiCp/2024Al 
623, 673, 

723, 773 
0.01, 0.1, 1, 10 







 


RT

Q
A n exp)][sinh(  α=0.013 MPa−1, 

n=9.075 

Q=225400 J/mol, 

ln A=35.48 s−1 
[14] 

2024Al-T351 − 1, 10, 100 )*1*)(ln1()( mn TCBA     
A=265 MPa, 

B=426 MPa, 

C=0.015 

n=0.34, 

m=1.0 
[16] 

2024Al-T3 − 4000, 8000 )*1*)(ln1()( mn TCBA     
A=369 MPa, 

B=684 MPa, 

C=0.0083 

n=0.73, 

m=1.7 
[17] 

2024Al-T351 
223, 293, 

423, 573, 723 

0.0001, 0.01, 

1, 500, 1800 
)*1*)(ln1()( mn TCBA     

A=304 MPa, 

B=478 MPa, 

C=0 

n=0.406, 

m=2.1 
[18] 

2024Al-T3 − − )*1*)(ln1()( mn TCBA     
A=325 MPa, 

B=414 MPa, 

C=0.015 

n=0.2, 

m=1 
[19] 

2024Al 
573, 623, 673, 

723, 773 
0.1, 1, 10, 100 
































)*exp(11

*)(

y

m 






T

QP rn 

 
P=78, 

Q=−12.13, 

n=0.796 

r=0.095, 

α=0.522, 

β=0.582 

[21] 

2024Al 
573, 623, 673, 

723, 773 
0.1, 1, 10, 100 

σ=σ0+dσ1+dσ2, 

,)*exp(11*
y

m
r0




























 



 Tm  

m=γ11T+γ12, 

dσ1=(γ21T+γ22)∆ε, 

032312 )(d   T  

α=0.399, 

β=0.722, 

γ11=0.0002, 

γ12=−0.375 

γ21=0.0172, 

γ22=−22.497, 

γ31=0.003, 

γ32=−2.819 

[22] 

2024Al-T351 
233, 296, 358, 

422, 505 

0.0001, 0.001, 

1, 1500, 2400 221

02

*]exp)([exp

]**)exp([

2
*

2

mKC

nm

TTC

TCBA













 

A=275.98, 

B=700.43, 

C1=0.0001726, 

C3=0.002752, 

n0=0.4208 

K1=64.68, 

m1=1.368, 

m2=0.3939, 

m3=0.3589 

[23] 

 

different specimen orientations to determine the flow 

stress behaviour using the Johnson−Cook model. 

However, the effect of temperature was investigated at 

one strain rate only. AMIR et al [19] performed 

machining investigations based on Ref. [20] to further 

refine the original constants of the Johnson−Cook model 

for 2024Al-T351 alloy. 

More recent constitutive models have focused on 

the modification of existing models or the development 

of new constitutive models. MAHESHWARI et al [21] 

proposed a modified Johnson−Cook model to describe 

the flow stress behaviour of 2024Al alloy from 

experimental compression data. It was found that in most 

cases, the modified model correlated better with 

experimental results compared with the original 

Johnson−Cook model. More recently, MAHESHWARI 

[22] proposed a new phenomenological constitutive 

model which correlated even better with experimental 

data compared with that previously proposed modified 

Johnson−Cook model [21]. KHAN and LIU [23] 

performed compression tests on 2024Al-T351 alloy and 

proposed a new phenomenological model to describe the 

flow stress behaviour. LIN et al [24] proposed a new 

constitutive model to predict the hot tensile deformation 

behaviour of Al−Cu−Mg, Al−Zn−Mg−Cu [25] and 

7075Al [26] alloy based on the original Johnson−Cook 

model. The authors reported greater prediction capability 

compared with the Johnson−Cook model. TRIMBLE and 

O’DONNELL [27] have also recently developed a new 

constitutive model to describe the flow stress behaviour 

of 7075Al. 

The objective of this study was to establish the flow 

stress behaviour of 2024Al-T3 through isothermal 

compression tests. This was achieved by evaluating the 
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prediction capability of various constitutive models for 

2024Al alloys and a recently developed constitutive 

model using statistical parameters such as average 

absolute relative error (AARE) and correlation 

coefficient (R). 

 

2 Experimental 
 

2024Al-T3 alloy cylindrical specimens with a 

diameter of 6 mm and height of 9 mm in the extrusion 

direction were prepared for compression tests from 

extruded bar stock in accordance with ASTM E209 [28]. 

The chemical composition of the material is shown in 

Table 2. The average grain sizes in the extruded direction 

were 90 μm and 30 μm in the width direction. A 

Gleeble−3800 mechanical simulator was used to perform 

isothermal compression tests as shown in Fig. 1(a). The 

cylindrical specimen was clamped between two 

compression dies and the deformational temperature was 

measured by thermocouples welded to the central regions 

of the specimen surface as shown in Fig. 1(b). To 

minimise friction, a combination of tantalum foil 

(thickness of 0.05 mm) and nickel-based lubricant was 

placed at the interface of the workpiece and heating 

anvils.  Thirty compression tests were performed over 

ranges of temperatures (573, 623, 673, 723, 773 K) and 

strain rates (0.001, 0.01, 0.1, 1, 10, 100 s
−1

). Each 

specimen was heated to the deformation temperature at a 

rate of 5 K/s by thermo-coupled feedback-controlled AC 

current using resistive heating. To obtain an equal heat 

distribution, the specimen was held for 2 min at 

isothermal conditions before compression. The 

specimens were plastically deformed to a strain of 0.5 if 

strain hardening occurs. Figure 2(a) shows the schematic 

diagram of the heating process. Standard equations were 

used to convert the load-stroke data to true stress−true 

strain data as shown in Eqs. (1) and (2), where σ is the 

true stress, P is the load, A0 is the original cross-sectional 

area, e is the engineering strain, ε is the true plastic strain, 

h0 is the original height of the specimen and h is the 

instantaneous height of the specimen. The elastic region 

was subtracted from the true stress−strain curve to get 

the true stress−true plastic strain data, which represents 

the flow stress data required when establishing 

constitutive models as shown in Fig. 2(b). 
 

σ=P/A0(1−e)                                 (1) 
 

ε=−ln(h0/h)                                  (2) 

 

Table 2 Chemical composition of experimental 2024Al-T3 

alloy (mass fraction, %) 

Si Fe Cu Mn Mg Cr Zn Ti Al 

0.50 0.50 4.35 0.6 1.5 0.10 0.25 0.15 Bal. 
 

 

 

Fig. 1 Gleeble−3800 thermo-simulation machine (a) and compression area (b) 
 

 

Fig. 2 Schematic diagram of heating process (a) and subtraction of elastic data using 0.2% offset strain (b) 
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3 Results 
 

3.1 Arrhenius-type model 

The effects of temperature and strain rate on 

deformation behaviour can be represented by the 

Zener−Holloman parameter (Z) in an exponent-type 

equation expressed as [10] 
 











RT

Q
Z exp                               (3) 

 
where   is the strain rate, R is the mole gas constant, T 

is the temperature (K) and Q is the activation energy of 

hot deformation (kJ∙mol
−1

). The Arrhenius-type model, 

which gives the relationship between flow stress and Z 

can be expressed as [11] 
 











RT

Q
AF exp)(                           (4) 































 allfor ,)][sinh(

2.1 ),exp(

8.0 ,

)(

1

n

n

F  

 

where σ is the flow stress (MPa) for a given strain, α, n, 

A, and Q are material constants (α=β/n1). In this work, a  

strain of 0.3 was taken as an example to introduce the 

solution procedures to determine the material constants. 

For low stress levels (ασ<0.8) and high stress levels 

(ασ>1.2), substituting the power law and exponential law 

of F(σ) into Eq. (4) yields the following: 
 

1n
B                                     (5) 

 

)exp( C                                (6) 
 

where B and C are material constants. Taking the natural 

logarithm of both sides of Eqs. (5) and (6), respectively, 

gives 
 

)ln(ln
1

ln
1

B
n

                             (7) 

 

)ln(ln
1

C 


                              (8) 

 

By substituting the values of flow stress and 

corresponding strain-rate under the strain of 1.0 for all 

deformation temperatures into Eq. (10), values for n1 and 

β can be calculated from the slope of the plots lnσ against 

ln  and σ against ln  respectively as shown in Figs. 

3(a) and (c). The average slope values at the different 

temperatures are taken when calculating n1 and β. Then, 

the corresponding value of α=β/n1 can be calculated. 

 

 

Fig. 3 Plots of ln σ against ln  (a), ln[sinh(ασ)] against ln  (b), σ against ln  (c) and ln[sinh(ασ)] against 1000/T at strain of  

3.0 (d) 
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When considering all stress levels, Eq. (9) can be 

expressed as 
 








 


RT

Q
A n exp)][sinh(                     (9) 

 

Taking the natural logarithm of both sides and 

rearranging, Eq. (9) can be expressed as 
 

n

A

nRT

Q

n

lnln
)]ln[sinh( 





               (10) 

 

By substituting the values of flow stress and 

corresponding strain rate under the strain of 1.0 at all 

deformation temperatures into Eq. (10), the value for n 

can be calculated from the average slope in the plot of  

ln[sinh(ασ)] against ln  as shown in Fig. 3(b). By 

differentiating Eq. (10), the following formula can be 

derived for a particular strain rate: 
 

)/1000(d

)]}{ln[sinh(d
100

T
RnQ


                    (11) 

 

The value of Q can be calculated from the average 

slope of the plot of ln[sinh(ασ)] against 1000/T under 

different strain rates as shown in Fig. 3(d). Hence, the 

value of A can be calculated from the intercept of the plot 

ln[sinh(ασ)] against ln . The influence of strain on 

flow stress behaviour is assumed to be insignificant in 

Eqs. (3) and (4). Hence, it is necessary to use a method 

of strain compensation. The influence of strain in the 

constitutive model is incorporated by assuming that the 

material constants are polynomial functions of strain. A 

second order polynomial, as shown in Eq. (12), 

represents the influence of strain on material constants 

with good correlation and generalisation as shown in  

Fig. 4. The coefficients of the polynomial are given in 

Table 3. 
 





















32
2

1

32
2

1

32
2

1

32
2

1

AAAA

QQQQ

nnnn









                        (12) 

 

According to the definition of hyperbolic law, the 

flow stress can be written as a function of the 

Zener−Hollomon parameter as shown in Eq. (13). The 

comparison between the experimental and predicted data 

from the strain compensated Arrhenius-type constitutive 

model under various processing conditions is shown in 

Fig. 5. 
 


















































2/1
/2/1

1ln
1

nn

A

Z

A

Z


             (13) 

 

 

Fig. 4 Variation of α and n (a) and Q and ln A (b) with true 

strain 

 

Table 3 Polynomial coefficients for α, n, Q and lnA 

i αi ni Qi/(105 kJ∙mol−1) lnAi 

1 6.95×104 5.226 1.789 31.4317 

2 0.0017 −3.9992 −1.204 −21.5358 

3 0.0099 7.2360 2.046 34.7271 

 

3.2 Johnson−Cook model 

The Johnson−Cook model can be represented as 

follows [16]: 
 

)*1*)(ln1)(( mn TCBA                    (14) 
 

where σ is the flow stress, ε is the plastic strain, 

0/*     is the dimensionless strain-rate with   

being the strain rate and 0  (1 s
−1

) being the reference 

stain rate, T*=(T−Tref)/(Tmelt−Tref) with T being the 

current temperature, Tref (573 K) being the reference 

temperature and Tmelt (911 K) being the melting 

temperature. Parameters A, B, C, n, and m are all material 

constants. At reference temperature and strain rate, and 

multiplying by the natural logarithm, Eq. (14) can be 

rearranged to 
 
ln(σ−A)=ln B+nln ε                           (15) 
 

where A is the yield strength at reference temperature 
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Fig. 5 Comparison between experimental and predicted flow stress values by Arrhenius-type strain compensated model at strain rate 

of 0.001 s−1 (a), 0.01 s−1 (b), 0.1 s−1 (c), 1 s−1 (d), 10 s−1 (e), 100 s−1 (f) 

 

and strain rate. B and n can be calculated from the 

intercept and slope of ln(σ−A) against ln ε respectively as 

shown in Fig. 6(a) by performing a linear fit. At 

reference temperature, Eq. (14) can be rearranged to 
 





ln1

)(
C

BA n



                        (16) 

 

C can be calculated from the slope of [σ/(A+Bε
n
)]−1 

against ln  as shown in Fig. 6(b) by performing a 

linear fit. By multiplying by the natural logarithm     

Eq. (14) can be rearranged to 

*ln
*)ln1)((

1ln Tm
CBA n
























          (17) 

m can be calculated from the slope of 


















*)ln1)((
1ln





CBA n
 against *lnT  as shown 

in Fig. 6(c) by performing a linear fit. Table 4 shows the 

initial and optimised constants for the JC model. Using 

these constants, the flow stress data are predicted under 

various processing conditions. Comparison between the 

experimental and predicted data by the JC model is 

shown in Fig. 7. 
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Fig. 6 Plots of ln(σ−A) against ln ε at reference strain rate and temperature (a) and 1
)(


 nBA 


 against ln  (b) and  


















*]ln1][[
1ln





CBA n
 against *lnT  (c) 

 

 

Fig. 7 Comparison between experimental and predicted flow stress values by Johnson−Cook model at strain rate of 0.001 s−1 (a),  

0.01 s−1 (b), 0.1 s−1 (c), 1 s−1 (d), 10 s−1 (e), 100 s−1 (f) 
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Table 4 Constants for Johnson−Cook model 

A B C n m 

84 69.4037 0.0940 −0.0990 0.5702 

 

3.3 Modified Johnson−Cook model 

The modified Johnson−Cook model proposed by 

MAHESHWARI et al [21] can be represented as follows: 
 





























 )*exp(11*)(

y

m 



 TQP rn       (18) 

 

where σ is the flow stress, ε is the plastic strain, 

0/*     is the dimensionless strain rate with   

being the strain rate and 0  (0.001 s
−1

) being the 

reference strain rate, T*=(Tmelt−T)(T−Tref) with T being 

the current temperature, Tref (573 K) being the reference 

temperature and  Tmelt (911 K) being the melting 

temperature, σm is the flow stress at the melting point and 

σy is yield stress at the melting point. Parameters P, Q, n, 

r, α and β are all material constants. At reference 

temperature and strain rate, and by multiplying by the 

natural logarithm Eq. (18) can be rearranged to 
 
ln(σ−P)=ln Q+nln ε                          (19) 
 

where P is the yield strength at reference temperature 

and strain rate. Q and n can be calculated from the 

intercept and slope of ln(σ−P) against lnε respectively as 

shown in Fig. 8(a) by performing a linear fit. At 

reference temperature and multiplying by the natural 

logarithm Eq. (18) can be rearranged to 
 





lnln r

QP n

















                         (20) 

 

r can be calculated from the slope of 














 nQP 


ln  

against ln  as shown in Fig. 8(b) by performing a 

linear fit. σm and σy are both zero, hence, by multiplying 

each side by the natural logarithm Eq. (18) can be 

rearranged to 
 





*

)*)((
ln T

QP rn
















 
                 (21) 

 
α and β can be calculated from the plot of 















 )*)((
ln

rnQP 




 against T* as shown in Fig. 8(c) 

by performing a first order power function fit. Table 5 

shows the constants for the modified JC model. Using 

these constants, the flow stress data are predicted under 

various processing conditions. Comparison between the 

experimental and predicted data by the modified JC 

model is shown in Fig. 9. 

 

3.4 Maheshwari model 

The Maheshwari model can be represented as 

follows [22]: 
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(22) 
 

where 0/*     is the dimensionless strain rate with 

 

 

Fig. 8 Plot of ln(σ−P) against ln ε at reference strain-rate and temperature (a), 

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Fig. 9 Comparison between experimental and predicted flow stress values by modified Johnson−Cook model at strain rate of   

0.001 s−1 (a), 0.01 s−1 (b), 0.1 s−1 (c), 1 s−1 (d), 10 s−1 (e), 100 s−1 (f) 

 

Table 5 Constants for modified Johnson−Cook model 

P Q n r α β 

84 0.9197 −0.9911 0.0964 0.5189 0.5793 

 

  being the strain rate and 0  (0.001 s
−1

) being the 

reference stain rate, T*=(Tmelt−T)(T−Tref) with T being 

the current temperature, Tref (573 K) being the reference 

temperature and Tmelt (911 K) being the melting 

temperature, σexp is the experimental stress, σr     

(91.32 MPa) is the reference flow stress at reference 

temperature and strain, ∆ε=(ε−ε0) with ε0 being the 

reference strain (0.3) and )/ln( 00    . Parameters α, 

β, γ11, γ12, γ21, γ22, γ31 and γ32 are all material constants. σm 

is the flow stress value at the melting point and σy is 

yield stress at the melting point, both are equal to zero. 

At reference strain, 
 

)]*[exp(*r0
 Tm                      (23) 

 
Multiplying each side by the natural logarithm,   

Eq. (23) can be rearranged as follows: 
 

Im  *ln)/ln( r0                          (24) 
 

Five values for m and I (σT*
β
) for each temperature 
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can be calculated from the slope of intercept respectively 

from the plot of )/ln( r0   against *ln  by 

performing a linear fit as shown in Fig. 10(a). Values for 

γ11 and γ12 can be calculated from the plot of m against 

T* as shown in Fig. 10(b) by performing a linear fit. 

Values for α and β can be calculated from the plot of I 

against T* by performing a first order power fit as shown 

in Fig. 10(b). At reference strain rate,    /)(A  will 

yield 5 values represented at different temperatures. 

Hence, values for γ21 and γ22 can be calculated from the 

linear plot of   /)(A  against T as shown in Fig. 

10(c). ]/)()[/( 0  M will also yield 5 values 

represented at different temperatures. Values for γ31 and 

γ32 can be calculated from the plot of 

]/)()[/( 0  M  against T by performing a linear fit 

as shown in Fig. 10(d). Table 6 shows the constants for 

the Maheshwari model. Using these constants, the   

flow stress data are predicted under various processing 

 

Table 6 Constants for Maheshwari model 

α β γ11 γ12 

0.4288 0.5845 1.8174×10−4 −0.013 

γ21 γ22 γ31 γ32 

0.0756 −65.4508 0.0074 −5.9132 
 

 
conditions. Comparison between the experimental and 

predicted data by the Maheshwari model is shown in  

Fig. 11. 

 

3.5 Khan−Liu model 

The Khan−Liu model [23] is represented as follows: 
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        (25) 

 

where σ is the flow stress, ε is the plastic strain, 

0/*     is the dimensionless strain rate with   

being the strain rate and 0  (1 s
−1

) being the reference 

stain rate, T*=(Tmelt−T)/(Tmelt−Tref) with T being the 

current temperature, Tref (573 K) is the reference 

temperature, Tmelt (911 K) is the melting temperature,  

Tc (380 K) is the threshold temperature. Parameters A, B, 

C1, C3, n0, K1, m1, m2 and m3 are all material constants. 

The material constant A can be determined from the yield 

stress at reference temperature and reference strain-rate. 

At reference temperature and zero plastic strain, Eq. (25) 

 

 

Fig. 10 Plot of ln(σ0/σr) against *ln (a), m and I against T* (b),   /)(A  against T (c) and ]/)()[/( 0  M  against T (d) 
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Fig. 11 Comparison between experimental and predicted flow stress values by Maheshwari model at strain rate of 0.001 s−1 (a),  

0.01 s−1 (b), 0.1 s−1 (c), 1 s−1 (d), 10 s−1 (e), 100 s−1 (f) 

 

can be rearranged to 
 

 
1)/ln( CAy                                (26) 

 

Material constant C1 can be calculated from the 

slope of ln(σ/A) against   by performing a linear fit as 

shown in Fig. 12(a). However, it is clear that this 

relationship would be more accurately represented by a 

power function fit. At reference strain rate and zero 

plastic strain, Eq. (25) can be rearranged to 
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Material constant m2 can be determined from the 
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linear fit as shown in Fig. 12(b). At reference strain rate, 

Eq. (25) can be rearranged to 
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Fig. 12 Plots of ln(σ/A) against   (a),  ln(σy/A) against  
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Material constant m3 can be determined from the 

slope of 
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performing a linear fit as shown in Fig. 12(c). At 

reference strain rate and reference temperature, Eq. (25) 

can be rearranged to 
 
ln(σ−A)=ln B+n0ln ε                          (29) 
 

Material constants n0 and B can be determined from 

the slope and intercept respectively of ln(σ−A) against 

lnε by performing a linear fit as shown in Fig. 12(d). At 

reference temperature, Eq. (25) can be rearranged to 
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Material constant C3 can be determined from    

the slope of 
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performing a linear fit as shown in Fig. 12(e). However, 

it is clear that a linear fit is not adequate for this 

relationship. According to KHAN and LIU [23], at fixed 

temperature (573 K), fixed strain (10%) and at fixed 

strain rates (0.001, 0.01 and 1 s
−1

), K1 can be calculated 

from 
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Furthermore, m1 can be calculated from Eq. (32) by 

using stress data at elevated temperature and strain rates 

of 1 and 0.01 s
−1

 as shown in Fig. 12(f). Table 7 shows 

the constants for the Khan−Liu model. Using these 

constants, the flow stress data are predicted under 

various processing conditions. Comparison between the 

experimental and predicted data by the Khan−Liu model 

is shown in Fig. 13. 
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Table 7 Constants for Khan−Liu model 

A B C1 C3 n0 

84 69.4037 0.0078 0.012 −0.099 

K1 m1 m2 m3 

12.4768 −1.1332 1.6805 −1.0336 

 

3.6 Trimble model 

The Trimble model [27] can be represented as 

follows: 
 
σ=Aε

n
exp(Bε+C)T*                           (33) 

 

where σ is the flow stress, ε is the plastic strain,   is 

the strain rate, T*=(T−Tref) with T being the current 

temperature and Tref being the reference temperature, A 

and n represent the effect of work hardening, C is a 

material constant which incorporates the effect of 

temperature on flow stress, and B is the constant that 

defines the coupled effect of strain and temperature on 

flow stress. A reference temperature is used to avoid 

extrapolation of the flow stress to 0 K as data are not 

available at this temperature. The difference between the 

temperature of interest and the reference temperature is 

used to incorporate the effect of flow softening, with the 

reference temperature being the minimum temperature 

(573 K) of the test matrix for which prediction is 

required. To consider the effect of strain rate, material 

constants A, n, B and C are considered functions of strain 

rate which can be described as the third order 

polynomials as follows: 
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            (34) 

 

The constants can be determined by multiplying 

each side of Eq. (33) by the natural logarithm: 
 
ln σ=ln A+nln ε+(Bε+C)T*                     (35) 
 

A linear plot of lnσ against T* as shown in      

Fig. 14(a) yields five values for (Bε+C) represented by 

the slope (S) and five values of lnA+nlnε represented by 

the intercept (I) for each value of strain at one particular 

strain rate such that: 
 
S=Bε+C                                    (36) 
 
I=ln A+nln ε                                (37) 
 

A linear plot of S against ε as shown in Fig. 14(b) 

will yield six values for B and C at different strain rates 

which can be calculated from the slope and intercept 

respectively. Similar, a linear plot of I against ln ε as 

shown in Fig. 14(c) will yield six values for A and n.   

A third order polynomial plot of A, n, B and C against  

ln as shown in Fig. 15 will yield values for all 
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Fig. 13 Comparison between experimental and predicted flow stress values by Khan−Liu model at strain-rate of 0.001 s−1 (a),    

0.01 s−1 (b), 0.1 s−1 (c), 1 s−1 (d), 10 s−1 (e), 100 s−1 (f) 

 

 

Fig. 14 Plots of ln σ against T* at strain-rate of 1 s−1 (a), S against ε (b), and I against ln ε (c) 
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constants in Eq. (34). Table 8 shows the constants for the 

Trimble model. Using the optimised constants, the flow 

stress data are predicted under various processing 

conditions. Comparison between the experimental and 

predicted data using the Trimble model is shown in   

Fig. 16. 
 

 
Fig. 15 Plot of A and n against ln  (a) and B and C against ln  (b) 
 

 

Fig. 16 Comparison between experimental and predicted flow stress values by Trimble model at strain rate of 0.001 s−1 (a),      

0.01 s−1 (b), 0.1 s−1 (c), 1 s−1 (d), 10 s−1 (e), 100 s−1 (f) 
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Table 8 Constants for Trimble model 

i Ai ni Bi Ci 

1 0.0317 0.0002 0.0002×10−3 −2.35×10−7 

2 0.7695 0.0007 −0.0305×10−3 −7.87×10−6 

3 14.5169 −0.0057 0.0547×10−3 1.74×10−4 

4 163.6004 −0.0372 0.2989×10−3 −0.0052 

 

4 Discussion 
 

In order to make a comparative analysis on the 

predictability of the models, the correlation coefficient  

(R) and the average absolute relative error (AARE) were 

used to evaluate the deviation of the predicted flow stress. 

The correlation coefficient provides information on the 

strength of the linear relationship between the 

experimental and predicted values. It should be noted 

that a higher value of R may not necessarily indicate 

better performance due to the tendency of the model to 

be biased towards higher or lower values [29]. However, 

the average absolute relative error (AARE) is computed  

through a term by term comparison of the relative error 

and is therefore an unbiased statistical parameter for 

measuring the predictability of a model. The correlation 

coefficient and average absolute relative error (AARE) 

can be expressed as 
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where Ei is the experimental data and Pi is the predicted 

data, E and P are the mean experimental and predicted 

values respectively, and N is the total number of data 

employed in the analysis. Figure 17, Table 9 and Table 

10 show the correlation between experimental and 

predicted flow stresses, the AARE at different 

strain rates and temperatures, and the overall AARE and  

 

 
Fig. 17 Correlation between experimental and predicted flow stress values for different constitutive models: (a) Arrhenius-type 

compensation model; (b) Johnson−Cook model; (c) Modified Johnson−Cook model; (d) Maheshwari model; (e) Khan-Liu model;  

(f) Trimble model 
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Table 9 AARE at different strain-rate and temperature for different constitutive models 

Strain rate/s−1 Temperature/K 
AARE/% 

Arrhenius-type strain Johnson−Cook Modified Johnson−Cook Maheshwari Khan−Liu Trimble 

0.001 

573 5.4047 34.9942 0.5660 3.5976 7.0242 9.0475 

623 14.5469 48.0097 8.2999 13.0745 16.0671 8.5679 

673 9.5810 39.8519 6.3971 2.5252 25.0521 2.8698 

723 7.5155 36.2656 18.0490 5.9089 49.3258 2.8362 

773 7.3682 30.4334 41.5062 25.0826 83.4936 5.7775 

0.01 

573 12.6058 12.6915 3.6580 6.1409 2.8640 1.9396 

623 6.6896 21.6972 6.5880 2.5135 19.8200 2.5562 

673 7.5229 27.6382 1.8815 6.7043 3.1723 6.4953 

723 5.4031 24.3827 8.0939 2.2920 19.4169 1.7744 

773 1.0091 24.8614 17.9563 12.1064 32.2919 4.1623 

0.1 

573 8.5369 21.3324 15.6044 14.6245 14.7686 8.1962 

623 7.4112 16.3477 2.8832 2.3541 14.8980 8.5228 

673 5.1060 15.5958 4.1225 2.6547 25.8725 7.1096 

723 5.4419 24.0516 2.1765 2.5929 21.1302 3.9614 

773 1.9576 27.0574 3.4557 5.6503 25.5709 2.4146 

1 

573 10.1085 0.4984 4.9458 4.8957 4.5465 1.8308 

623 12.0851 11.6408 6.3134 3.5986 5.6555 2.4006 

673 7.6576 15.7222 1.7045 2.1311 7.3826 1.4398 

723 0.5715 23.4560 3.2891 1.1580 3.4515 2.5278 

773 2.1232 29.6517 2.3923 7.0912 2.1455 1.2553 

10 

573 10.9930 16.5108 10.0828 11.1960 19.7836 10.1260 

623 3.1854 19.0123 0.7553 1.6648 33.7434 8.4645 

673 6.8207 19.7536 1.5138 2.6404 14.9051 11.5758 

723 6.8930 34.1626 14.6347 6.0522 26.4500 3.1787 

773 7.8076 42.4614 18.0693 3.4264 31.7135 4.9444 

 573 4.6138 8.6628 4.2636 1.7543 10.5994 3.1346 

 623 4.1187 25.4204 2.6364 3.1641 12.6339 3.7999 

100 673 2.3231 26.2692 3.3849 2.9813 12.2928 1.6601 

 723 1.6714 33.5766 8.7195 5.6845 22.2813 2.5451 

 773 5.1178 40.7729 10.6111 13.2123 32.8310 2.9496 

 

Table 10 Total AARE and correlation coefficient for different constitutive models 

Model 
Arrhenius- 

type 

Arrhenius-type 

strain 

Johnson− 

Cook 

Modified 

Johnson−Cook 
Maheshwari Khan−Liu Trimble 

Correlation Coefficient 0.9872 0.9882 0.9768 0.9873 0.9902 0.9702 0.9913 

AARE/% 7.0767 6.4064 25.0927 7.9330 5.9491 19.3108 4.6021 

 

correlation coefficient for the six models investigated 

respectively. The recently developed Trimble model 

recorded the highest correlation coefficient (R=0.99) and 

the lowest AARE (4.6%) across all models investigated 

and hence is the most suitable for predicting the hot 

deformational behaviour of 2024Al-T3 alloy across the 

processing domain investigated during this analysis. The 

empirical formulation of the model ensures that the 
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coupled effects of strain, strain rate and temperature are 

encapsulated when predicting flow stress and constants 

are calculated over the entire processing domain. 

In comparison, some models make assumption to 

calculate constants within specific processing ranges 

which reduce prediction capability. For example, when 

determining the constants of the Johnson−Cook model, 

constants A, B and n are calculated at the reference strain 

(1 s
−1

) and reference temperature (573 K). As a result, a 

low AARE of 0.4984% is recorded in this condition 

compared with an average AARE of 25.09%. Constant C 

is calculated at reference temperature and AARE values 

are on average less at this temperature compared with 

others (15.78% at 573 K, 23.69% at 623 K, 24.13% at 

673 K, 29.32% at 723 K, 32.54% at 773 K). Hence, four 

of the five constants of this model are calculated within a 

narrow processing window of reference temperature and 

strain rate. 

Similarly, constants P, Q and n of the modified 

Johnson−Cook model are all calculated at the reference 

strain rate (0.001 s
−1

) and reference temperature (573 K). 

As a result, a low AARE of 0.566% is recorded in this 

condition compared with an average of 7.933%. Constant 

r is calculated at reference temperature and AARE values 

are on average less at this temperature compared with 

others (3.42% at 573 K, 4.73% at 623 K, 6.59% at 673 K, 

9.23% at 723 K, 15.68% at 773 K). Hence, four of the 

six constants of this model are calculated within a narrow 

processing window. 

Also, constants A, B and n0 of the Khan−Liu model 

are all calculated at the reference strain rate (1 s
−1

) and 

reference temperature (573 K) and a low AARE of 

4.54% is recorded in this condition compared with an 

average value of 19.31%. Constants C1 and C2 are 

calculated at reference temperature and constants m1 and 

m3 are calculated at reference strain rate. Hence, seven of 

the nine constants of this model are calculated within a 

narrow processing window. 

A number of minor assumptions reduce the 

prediction capability of the Arrhenius-type model. For 

example, it is assumed that there is a constant linear 

relationship between σ against ln  at all temperatures. 

However, this is not the case as shown in Fig. 3(b). It is 

clear that the slope decreases with increasing temperature 

which must be accounted for. Further constant linear 

assumptions can be observed in Fig. 3(a). Similarly, 

MAHESHWARI assumed constant linear relationships in 

Figs. 10(c) and (d) when this is not the clear case. 

Table 11 shows the prediction capability of different 

models using constants from literature (Table 1) over the 

processing domain investigated during this analysis. As 

expected, values of AARE and correlation coefficient are 

significantly higher and lower respectively compared 

with those in Table 10. This can be attributed to a 

variation of the processing domain investigated to 

determine these constants, material composition and heat 

treatment compared with this analysis. 

 

Table 11 Prediction capability using constants from literature 

Model AARE/% R Ref. 








 


RT

Q
A n exp)][sinh(  35.22 0.96 [12] 








 


RT

Q
A n exp)][sinh(  12.92 0.98 [13] 








 


RT

Q
A n exp)][sinh(  30.74 0.97 [14] 

)*1*)(ln1)(( mn TCBA     441.42 0.71 [16] 

)*1*)(ln1)(( mn TCBA     563.40 0.52 [17] 

)*1*)(ln1)(( mn TCBA     600.9 0.45 [18] 

)*1*)(ln1)(( mn TCBA     416.65 0.76 [19] 

)]*exp(1[*)(  TQP rn    17.48 0.98 [21] 

032312

22211

1211

r0

210

)(d

)(d

)]*exp(1[*

dd



























T

T

Tm

Tm

 15.09 0.98 [22] 

 )]**exp([ 03
3

nm
TCBA    

2*)]exp()(*)[exp( 121
m

TKTCC     
357.7 0.69 [23] 

 

5 Conclusions 
 

Isothermal hot compression tests were conducted on 

a Gleeble−3800 mechanical simulator over a wide 

processing range of strain (0.1−0.5), temperatures 

(573−773 K) and strain rate (0.001−100 s
−1

) to predict 

the hot deformational behaviour of 2024Al-T3 alloy.  

Statistical parameters such as correlation coefficient and 

average absolute relative error were used to determine 

the prediction capability of various constitutive models 

for 2024Al alloys and a recently developed model. The 

Trimble model recorded the lowest AARE (4.6%) and 

the highest correlation coefficient (R=0.99) compared 

with other models. Hence, the Trimble model is the most 

suitable for predicting the hot deformational flow stress 

behaviour of 2024Al-T3 alloy across the processing 

range investigated during this analysis. 
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Al2024-T3 合金热变形加工工艺的流变应力预测 
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摘  要：为了预测 Al2024-T3 合金热变形加工工艺的流变应力行为，在应变速率(0.001~100 s−1)、应变(0.1~0.5)和

温度(573~773 K)条件下，进行了等温压缩试验。采用统计参数，如平均相对误差绝对值(AARE)和相关系数(R)评

估了 Al2024 合金不同的本构模型和最新构建的本构模型的预测能力。与其他的模型相比，最新构建的模型能得

到最低的 AARE(4.6%)和最高的相关系数(0.99)。因此，与其他模型相比，该模型能更精确地描述 Al2027-T3 合金

的变形行为。 

关键词：等温压缩；2024 铝合金；本构模型；流变应力 
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