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Abstract: The database of 254 rockburst events was examined for rockburst damage classification using stochastic gradient boosting 

(SGB) methods. Five potentially relevant indicators including the stress condition factor, the ground support system capacity, the 

excavation span, the geological structure and the peak particle velocity of rockburst sites were analyzed. The performance of the 

model was evaluated using a 10 folds cross-validation (CV) procedure with 80% of original data during modeling, and an external 

testing set (20%) was employed to validate the prediction performance of the SGB model. Two accuracy measures for multi-class 

problems were employed: classification accuracy rate and Cohen’s Kappa. The accuracy analysis together with Kappa for the 

rockburst damage dataset reveals that the SGB model for the prediction of rockburst damage is acceptable. 
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1 Introduction 
 

Rockburst damage prediction is one of the most 

serious worldwide problems in burst-prone mines    

(Fig. 1) [1−4]. The occurrence of rockbursting usually 

involves violent failures and ejection of large quantities 

of rock, ranging from a fraction of a cubic meter to 

thousands of cubic meters, especially, rock particles can 

be ejected with a velocity of 8−50 m/s [5,6]. Because of 

the sudden time and uncertain places for rockburst, 

catastrophic rockbursts can lead to fatalities, injuries, 

damage to mine infrastructure and/or equipment, 

premature mine closures with abandonment of large 

reserves, and loss of production [4,5]. Over the years, it 

still occurs and remains a serious problem in the mining 

industry. Nowadays, rock excavations can reach great 

depths, and with the increased development of mining 

activities worldwide, the problem of rockbursting is 

likely to become worse [7]. Therefore, the prediction of 

the rockburst damage is very important and necessary for 

disaster prevention and migration. 

Despite it is very hard to accurately predict the 

rockburst during excavation, extensive rockburst 

researches have been conducted in South Africa, 

Australia, Canada, China, and other countries [1,5,7]. As 

noted by ZHOU et al [5], different methods of estimating 

and predicting rockburst such as empirical criteria, in situ 

testing methods, and preliminary and qualitative 

judgment prediction methods have been proposed and 

often applied in practice [7−12]. Meanwhile, much work 

related to the prediction of rockburst has been conducted 

by numerical simulations [13,14]. These methods or 

criteria have been used with local monitoring data and 

laboratory tests to study the mechanical characters of 

rockbursts. Notwithstanding these earlier works, 

numerous approaches for rockburst prediction have been 

developed based on neural networks [15], Fisher 

discriminant analysis [16], hybrid [12] or ensemble 

techniques [17] and supervised learning techniques [5]. 

These collective efforts have greatly improved the 

prediction of rockbursting. However, few approaches 

have been found to be particularly successful. Obviously, 

only one empirical criterion could not satisfy the 

prediction accuracy especially for a specific underground 

engineering. Each of the numerical methods has its 

advantages and weaknesses, but the estimation of 

reliable values of model input parameters is found to be 

an increasingly difficult task [5]. Moreover, it is not 

convinced that the indicators from the laboratory test of 
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Fig. 1 Rockburst phenomena in burst-prone grounds [4] 

 

rock sample are sufficient to judge the occurrence of 

rockbursts damage. Meanwhile, as stated by ZHOU    

et al [5,12], the rockburst is strongly site-specific, 

depending upon many factors including in-situ stress, 

rock mass strength, tunnel geometry, excavation methods, 

discontinuities and/or the activation of faults due to 

mining operation. Therefore, it is still considerable 

challenge for understanding and predicting rockbursts 

damage in burst prone ground. 

Stochastic gradient boosting (SGB) (also called 

gradient boosting machine), as a relatively new 

tree-based pattern recognition method, has been 

proposed by FRIEDMAN [18] to optimize predictive 

performance [19]. Owing to the merits of a limited 

number of user-defined parameters and the ability to 

model non-linear relationships, managing qualitative and 

quantitative variables, remaining robust despite missing 

data and outliers, the SGB model has been widely 

applied and shown considerable success in various 

scientific fields, e.g., pillar stability [20], skin flavonoid 

content [21], residential structures damage [22], land 

cover mapping [23] and organic carbon concentration 

mapping [24]. However, the performance of SGB model 

has not yet been attempted in recent rockburst damage 

studies. Therefore, it is motivated to investigate the 

capability of SGB in rockburst damage prediction. The 

main objective of this study is to investigate the 

feasibility of using the SGB classification model to 

predict rockburst damage in burst-prone mines, so that 

early warning can be provided to mine management for 

appropriate actions to reduce damage and save lives. 

 

2 Predictive modeling 
 

2.1 SGB classifier 

SGB is a hybrid machine learning algorithm that 

combines both the advantages of bagging and boosting 

procedures. The SGB can be applied for the purposes of 

classification and regression [18, 19]. The term rockburst 

damage refers to the classification task. For multiple 

classification (K>2), the surrogate loss function can be 

considered as the following equation [18,22]: 





k

K

kk
K

kk xpyxFy
1

1 )](log[}))(,({  





k

K

krk xyPy
1

)]|1(log[  

 
 


k

K

K

l

lkk xFxFy
1 1

]))(exp(/))(log[exp(       (1) 

 

where yk=1 (class=k) ∈{0, 1}, k is the number of class 

values (k=1,2,…, K). 
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Thus, K-trees are induced, each to predict the 

corresponding current residuals N
iik

k
i xpy 1)}({  . This 

produces K-trees each with L-terminal nodes at iteration 

m, {Rklm}. As mentioned above, a separate line search is 

performed in each terminal node l of each tree k, 
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where k=−yklog[pk(x)]. 

There are three main hyper-parameters for tuning 

the SGB model [22, 25, 26]: M is the total number of 

boosting iterations (n.trees), v is the learning rate 

(shrinkage coefficient) and J is the number of terminal 

nodes (tree size). All computation and data analyses are 

implemented using the open source software R (Vision 

3.02) [27]. 

 

2.2 Evaluation of SGB performance 

Till now, there is no generally accepted measure of 

performance for multiclass models. The predictive power 

of SGB algorithm on rockburst damage data is evaluated 

by the classification accuracy rate and the Cohen’s 

Kappa coefficient [5,20,22,28]. The prediction accuracy 

is defined as the fraction of records that is correctly 

allocated by the model about the overall number of 

records among the classification models [5,20]. The 
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Kappa index [28] measures the proportion of correctly 

classified units after the probability of chance agreement 

is removed. Let x be an K×K error matrix set out in rows 

and columns that express the number of sample plots (of 

which there are n) predicted to belong to one of K classes 

about the true class label. Thus, the classification 

accuracy (A) and the Kappa index can be obtained using 

the following expressions: 
 

%100
1

1















 



K

i

iix
n

A                          (4) 

 




















K

i

ii

K

i

ii

K

i

ii

xxn

xxxn

1

2

11

)(

)(

Kappa                     (5) 

 
where xii is the cell count in the main diagonal, n is the 

number of examples, and x.i and xi. are the columns and 

rows total counts, respectively. 

 

3 Application of SGB approach for 
rockburst damage prediction 

 

3.1 Mechanisms of rockburst damage 

Various rockburst mechanisms have been proposed 

by some researchers. ORTLEPP and STACEY [6] made 

a distinction between the seismic source mechanism and 

the rockburst damage mechanism, while KAISER et al [2] 

used the term modes of failure (Fig. 2) to describe the 

same occurrences, which has been adopted by the 

Australian Centre for Geomechanics (ACG) in its 

generic seismic risk management plan for underground 

hard rock mines [29]. MISICH and LANG [30] also 

investigated a more detailed rockburst classification 

system which defined rockbursts  by the source  

 

 

Fig. 2 Schematic drawing showing three rockburst damage 

mechanisms (Modified from Ref. [2]) 

mechanism and the damage mechanism that occurred at 

the excavation boundary. 

 

3.2 Indictor analysis 

Apparently, the rockbursting is associated with the 

stress in the earth’s crust, rock properties and the 

presence of groundwater and the structures of the rock 

masses [5]. Many single indicators or criteria for 

evaluating the occurrence and intensity of rockbursts 

have been presented based on the analysis of the 

rockburst phenomenon from different perspectives [12]. 

DURRHEIM et al [31] investigated 21 rockbursts which 

caused damage to excavations in deep South African 

gold mines, and found that the source mechanism of 

rockbursts is often controlled by the mine layout and 

regional structures, whileas local rock conditions and 

support systems strongly influenced the location and 

severity of rockburst damage. Obviously, the mines 

below the earth surface were excavated with a confining 

environment-defined by stresses in the earth’s      

crust [32,33]. Thus, the stress condition surrounding an 

excavation is an important factor in designing 

underground excavations and contributes to the level of 

damage induced by dynamic loading of a rock mass. 

HEAL et al [29] defined the stress condition factor (SCF), 

FSC, as the fraction of static loading to the intact strength 

of the rock in Eq. (6). The excavation span (ES) often 

has a direct influence on the depth of failure for gravity 

related falls of ground and dynamic rock mass    

failures [32], the meaning of span refers to the width of 

an underground opening in plan view, as illustrated in  

Fig. 3. In general, the span can be determined through the 

largest diameter of a circle within an underground 

excavation [34]. Ground support system capacity (GSSC) 

reveals the dynamic strength of a rock mass, reducing the 

likelihood of rock mass failure [29]. The influence of 

geological structure (GS) factor accounts for favourable 

and unfavourable rock mass conditions which may 

hinder or enhance dynamically driven rock mass  

failure [29, 32]. Meanwhile, considerable research efforts,  

made by MCGARR [35], ORTLEPP and STACEY [6],  

 

 

Fig. 3 Span definition plan view 
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KAISER et al [2] and QIU et al [36], have been devoted 

to estimating the peak particle velocity (PPV) and many 

empirical scaling laws have been derived, apparently, 

these equations mainly focus on the attenuate relation of 

PPV at the rockburst source to scale distance. 
 
FSC =100×σ1T/UCS                            (6) 
 

where σ1T is the total maximum principal stress in the 

vicinity of the workplace been evaluated, MPa; UCS is 

the intact uniaxial compressive strength (UCS) of the 

rock, MPa. 

It is recommended by HEAL et al [29] that the 

potential for rockburst damage can be captured through 

the use of the following five variables collected for each 

rockburst damage case history. There are the SCF, the 

GSSC, the ES, the GS and PPV at the rockburst site. 

Those indicators are recognized as the major  

parameters to quantitatively discover the activities in 

context of rockburst damage potential. Based on these 

considerations, these five variables (SCF, GSSC, ES, GS 

and PPV) are adopted as the input indicators for the 

prediction of rockburst damage in the SGB model. 

Numerous scholars such as KAISER et al [2], HEAL   

et al [29] and ZHOU et al [5] have conducted a variety of 

rockburst classification methods. In general, the  

division of rockburst damage can be described  

according to general damage characteristics of  

rockburst in burst-prone mines. The descriptions of the   

rockburst damage classification state are provided in 

Table 1 [3,29]. 

 

Table 1 Rockburst damage classification and its characteristics 

Rockburst 

damage scale 

Qualitative description 

Expected rockmass 

damage 

Expected 

support damage 

None (R1) 
No damage/ 

minor loose 
No damage 

Low (R2) 
Minor damage/less than 

1 ton displaced 

Support system is 

loaded, loose mesh, 

plates deformed 

Moderate (R3) 1−10 tons displaced Some broken bolts 

High (R4) 10−100 tons displaced 
Major damage to 

support system 

Strong (R5) 100+ tons displaced 
Complete failure of 

support system 

 

3.3 Data sources and data description 

To measure the performance of the developed SGB 

approaches, the data are collected by the ACG from the 

original work of HEAL [3] database. The details of these 

cases are presented in Table 2 which lists main 

parameters included in this database. The database 

contains data on 13 underground hard rock mines in 

Australia and Canada and composes of 254 cases of 

rockburst events. 

 

Table 2 Descriptive statistics of input parameters for SGB 

modeling 

Parameter Range Mean 
Standard 

deviation 
Skew Kurtosis 

PPV/ 

(m·s−1) 
0.12−7.87 1.66 1.31 0.02 −0.74 

SCF 18.00−95.00 54.51 17.81 2.37 7.99 

GSSC/ 

(kJ·m−2) 
2.00−25.00 7.89 4.22 2.52 12.95 

ES/m 1.00−30.00 7.21 3.03 −0.20 0.05 

GS 0.50−1.50 0.91 0.26 1.54 3.48 

Total number of data points is 254. 

 

Note that the GSSC and GS are dimensionless 

parameters and quantized as recommended by HEAL  

et al [29]. Consequently, the GSSC is classified as 2, 5, 8, 

10 and 25 for the spot bolting (spacing > 1.5 m), pattern 

bolting (spacing 1−1.5 m), pattern bolting with a second 

bolting (overall spacing < 1 m), pattern bolting and 

pattern cable bolts and pattern dynamic support around 

the excavation, respectively. Similarly, the GS is also 

classified into three labels, the seismically active major 

structure is taken as 0.5, unfavorable rock mass/no major 

structure is taken as 1 and massive rock mass/no major 

structure around the excavation is taken as 1.5. 

The distribution of rockburst damage data is 

depicted in Fig. 4 as a pie chart illustrating the proportion 

of the four types of rockburst in burst prone mines, 

categorized as R2 (116 cases), R3 (48 cases), R4 (63 

cases) and R5 (27 cases). Note that R1 is omitted from 

the original dataset because of the large number of very 

minor damage locations that are unreported/unnoticed 

during rockburst investigations [3]. The scatterplot 

matrix is shown in Fig. 5. The pairwise relationship is in  
 

 

Fig. 4 Pie chart showing distribution of observed rockburst 

damage cases 
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Fig. 5 Pairs plot of observed rockbnrst damage cases for five 

parameters 

 

lower panel, the correlation coefficient is in upper panel, 

and the marginal distribution for each parameter is on the 

diagonal. It can be seen that the parameter SCF is 

correlated with GSSC. 

 

3.4 Development and validation of SGB model 

The original dataset of rockburst with known 

classes is randomly divided into two subsets: a training 

set and an independent test set. Here, 205 data sets of 

254 data sets (about 80% of the available data) are taken 

as training dataset, the reserved 49 data are considered as 

independent test dataset. Besides this, all input variables 

are scaled concerning the minimum and maximum of the 

data into the [0,1] range. The validation methods of 

model involves substitution method, holdout method, 

leave-one-out cross-validation (CV) method, leave 

more-out CV method and k-fold CV method [5,20,22]. 

On the other hand, as mentioned above, SGB classifier 

includes several parameters that have to be tuned. The 

train function from caret package within R [25] performs 

a grid of tuning parameters for a number of classification 

routines, which allows for a single consistent 

environment for training each of the SL algorithms and 

tuning their associated parameters. Here, several 

adjustable tuning parameters used by the SGB algorithm 

to optimize classification performance is examined using 

k-fold CV about computation time and variance, 10 folds 

is recommended by KOHAVI [37] when comparing the 

performance of machine learning algorithms [5]. 

Therefore, 10-fold CV procedure is applied for each 

possible parameter configuration during the construction 

of SGB model. In this procedure, the compounds of the 

training set are randomly divided into 10 subsets. Thus, 

each fold of cross validation randomly selects 10% of the 

data to serve as test data; then, the process fits a model 

on the remaining 90% of the data, as illustrated in Fig. 6. 

In each turn, a sample of data is partitioned into 

complementary subsets: the training set (white), and the 

test set (grey). These sets are employed to training and 

validation, respectively. By taking the mean of the results 

produced in each turn, an overall quality estimate can be 

provided. One ultimately finds that the model would 

minimize the prediction error averaged across all 10 

folds and models. The independent test set is never used 

in the development of the SGB model but it is used to 

test the predictive power of the final model. Thus, the 

predictive model is constructed using selected variables 

and training set and applied to independent test set as 

demonstrated in Fig. 6. 

 

4 Results and discussion 
 

4.1 Result of 10-fold CV procedure 

The SGB model is implemented with the caret [25] 

and gbm [26] R-packages in R software. To estimate 

rockburst damage, five indicators (PPV, SCF, ES, GSSC 

and GS) are adopted as input variables and the measured 

rockburst damage is chosen as an independent response 

variable in the developed SGB model. Classification tree 

[25] is used as the single classifier in SGB. The 10-fold 

CV procedure [5,20,22] is done to determine the optimal 

parameter values during modeling. A desired “tune 

length” variable can be passed to the “train” function in 

the caret package [25]. As described by KUHN and 

JOHNSON [19], the SGB has three tweaking parameters: 

M, v and J. To determine the optimal combination of 

these parameters in the interests of achieving the highest 

overall model accuracy during the CV process, a set of 

SGB models are tested using different values for v (0.001, 

0.01, 0.05 and 0.1), J (1, 3, 5, …, 13, 15), and M (100, 

150, 200, 250, …, 950, 1000). So, it will find one with 

the highest accuracy and Kappa and an optimal solution 

can be searched, as demonstrated in Fig. 7. The final 

values used for the SGB model are J = 1 and M = 300 

when v = 0.1. The CAR and Kappa of the SGB model 

are found to be 53.00% and 0.285 for 205 sets of training 

data using 10 folds CV procedure. 

 

4.2 Result of independent test set 

To validate the predictive model based on the 

predicted and measured (real) values, 49 testing samples 

(Table 3) are validated by the proposed model. The CAR 

and Kappa of the SGB model are found to be 61.22% 

with 95% CI (46.24%, 74.80%) and 0.425 for 49 sets of 

testing data. As can be seen from Table 3, the results are 

identical with field observations and the accuracy of this 

SGB classification model is appropriate. 

Further investigation of producer’s and user’s 

accuracies [20, 28] for each class using the SGB model is 

also calculated in Table 3. Therefore, producer’s and 

user’s accuracy performance measures for each class are 

calculated for the test set based on confusion matrices  
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Fig. 6 Illustration of overall procedure for performance evaluation for rockburst damage classification using SGB methods 

 

 

Fig. 7 Tuning parameters for determining optimal model of SGB method: (a) Kappa; (b) Accuracy 

 

Table 3 Confusion matrices and associated classifier accuracies 

for SGB prediction model based on test set of rockburst 

damage 

Predicted 
Observed 

Total UA/% 
R2 R3 R4 R5 

R2 17 4 2 1 24 70.83 

R3 3 3 3 0 9 33.33 

R4 1 1 7 1 10 70.00 

R5 2 1 0 3 6 50.00 

Total 23 9 12 5   

PA/% 73.91 33.33 58.33 60.00  
OA=61.22% 

Kappa=0.425 

Note: Diagonal elements (correct decisions) are marked in bold. OA is 

overall classification accuracy, PA is producer’s accuracy, UA is user’s 

accuracy 

(Table 3). The producer’s and user’s accuracies indicate 

that some features are better classified than others. R2 is 

classified more accurately compared with R3 in SGB 

model. Also R5 receives a relatively low user’s accuracy 

(less than 60.0%) in SGB model. It is evidence that the 

relationships between variables in rockburst events are 

almost always highly non-linear and extremely 

complicated. 

 

4.3 Relative importance of variables 

The generic function varImp () in caret package can 

be used to characterize the general effect of predictors on 

the model [19]. Variables are sorted by average 
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importance across the classes. For most classification 

models, each predictor will have a separate variable 

importance for each class, the default variable 

importance metric regards the area under the curve from 

a receiver operating characteristic analysis concerning 

each predictor, and is model independent [5]. In addition, 

all measures of importance are scaled to have a 

maximum value of 100. Figure 8 provides the result for 

the SGB model using function ‘‘varImp()” in the ‘‘caret” 

package [25] and displays the relative variable 

importance for each of the 15 predictor variables. Not 

surprisingly, PPV is the most sensitive factor among the 

indicators for the prediction of rockburst damage. The 

indicator SCF takes the second place of sensitivity. The 

indices of ES and GSSC are a bit sensitive, and the factor 

of GS is not as sensitive as the former two factors. The 

findings demonstrate that the SGB model is more 

sensitive to the indicator of PPV among the indicators for 

the prediction of rockburst damage in burst prone mines. 

The result is consistent with the correlation matrix of the 

variables that shows the highest coefficients for these 

variables (Fig. 5), and compares well with the previous 

research on this topic [2,3,7]. This also indicates that the 

selecting PPV as the main consideration of rockburst 

support is reasonable. This has been confirmed 

previously by KAISER et al [2], who proposed a support 

design rationale to resist rockburst damage and 

introduced PPV into an essential support design step. 
 

 
Fig. 8 Ranking variable importance associated with rockburst 

damage classification evaluation by SGB method 

 

4.4 Limitations 

First, the limitation of the proposed model is that 

the number of dataset is relatively small. It should be 

calibrated by a larger dataset involved in SGB modeling 

to improve the model’s precision and reliability. Second, 

the predictive accuracy of SGB method is relatively low. 

Also, it is worth noting that the accuracy of rockburst 

damage prediction is, to a large extent, highly dependent 

on the quantity, quality and reliability of original dataset 

and the rationality of mathematical model. Alternatively, 

the most widely accepted explanation is that the SC may 

be overestimated and the PPV at the excavation 

boundary may be incorrectly measured due to its 

variations. Moreover, there may be additional indicators, 

theoretically, some seismic source parameters may be 

ignored because data collection is a massive challenge. 

Besides this, as pointed out by Refs. [5,20], major 

disadvantages of SGB are that there is a high sensitivity 

to the selection of the dataset with respect to the resulting 

tree structure, its “black box” nature that prohibits easy 

interpretation of the relationships between the response 

and predictor variables and the data are often overfitted. 
 

5 Conclusions 
 

1) Stress condition factor, the ground support 

system capacity, the excavation span, the geological 

structure and the PPV of rockburst sites are taken as the 

criterion indices for rockburst damage prediction in the 

SGB model. Ten-fold CV procedure is applied for each 

possible parameter configuration during the construction 

of SGB model. The findings reveal that SGB model for 

predicting rockburst damage can be a valuable tool for 

work in burst prone mines. 

2) SGB model demonstrates that PPV is the most 

relevant predictor among the indicators for the prediction 

of rockburst damage classification. In future work, a 

larger dataset associated with other important parameters 

such as seismic source parameters can be calibrated in 

the SGB modeling to improve the model’s precision and 

reliability. 
 

References 
 
[1] ORTLEPP W D. RaSiM Comes of age—A review of the contribution 

to the understanding and control of mine rockbursts [C]//Controlling 

Seismic Risk—Proceedings of Sixth International Symposium on 

Rockburst and Seismicity in Mines. Nedlands: Australian Centre for 

Geomechanics, 2005: 3−20. 

[2] KAISER P K, MCCREATH D R, TANNANT D D. Rockburst 

support handbook [M]. Canada: Geomechanics Research Centre, 

Laurentian University, 1996. 

[3] HEAL D. Observations and analysis of incidences of rockburst 

damage in underground mines [D]. Perth: University of Western 

Australia, 2010. 

[4] STACEY T R, ROJAS E. A potential method of containing rockburst 

damage and enhancing safety using a sacrificial layer [J]. Journal of 

the Southern African Institute of Mining and Metallurgy, 2013, 

113(7): 565−573. 

[5] ZHOU J, LI X B, MITRI H S. Classification of rockburst in 

underground projects: Comparison of ten supervised learning 

methods [J]. Journal of Computing in Civil Engineering, ASCE, 2016: 

1−19. 

[6] ORTLEPP W D, STACEY T R. Rockburst mechanisms in tunnels 

and shafts [J]. Tunnelling and Underground Space Technology, 1994, 

9(1): 59−65. 

[7] ZHOU J. Strainburst prediction and spalling depth estimation using 

supervised learning methods [D]. Changsha: Central South 

University, 2015. (in Chinese) 

[8] ALBRECHT J, SHARROCK G. A model to forecast rockburst 

damage [C]//Challenges in Deep and High Stress Mining. Perth: 

Australian Centre for Geomechanics, 2006: 1−15. 



Jian ZHOU, et al/Trans. Nonferrous Met. Soc. China 26(2016) 1938−1945 

 

1945 

[9] SHI X Z, ZHOU J, DONG L, HU H Y, WANG H Y, CHEN S R. 

Application of unascertained measurement model to prediction of 

classification of rockburst intensity [J]. Chinese Journal of Rock 

Mechanics and Engineering, 2010, 29(1): 2720−2726. (in Chinese) 

[10] MITRI H S. Assessment of horizontal pillar burst in deep hard rock 

mines [J]. International Journal of Risk Assessment and Management, 

2007, 7(5): 695−707. 

[11] MITRI H S, TANG B, SIMON R. FE modelling of mining-induced 

energy release and storage rates [J]. The Journal of the South African 

Institute of Mining and Metallurgy, 1999, 99(2): 103−110. 

[12] ZHOU J, LI X B, SHI X Z. Long-term prediction model of rockburst 

in underground openings using heuristic algorithms and support 

vector machines [J]. Safety Science, 2012, 50(4): 629−644. 

[13] CASTRO L A M, BEWICK R P, CARTER T G. An overview of 

numerical modelling applied to deep mining [C]//Innovative 

Numerical Modeling in Geomechanics. London: Taylor & Francis 

Group, 2012: 393−414. 

[14] WILES T D. Rockburst prediction using numerical modelling: 

Realistic limits for failure prediction accuracy [C]//6th International 

Symposium on Rockbursts and Seismicity in Mines (RaSiM 6). Perth: 

Australian Centre for Geomechanics, 2005: 57−63. 

[15] CHEN D F, FENG X T, YANG C X, CHEN B R, QIU S L, XU D P. 

Neural network estimation of rockburst damage severity based on 

engineering cases [C]//Sinorock2013 Symposium. Shanghai: CRC 

Press, 2013: 457−462. 

[16] ZHOU J, SHI, X Z, DONG L, HU H Y, WANG H Y. Fisher 

discriminant analysis model and its application for prediction of 

classification of rockburst in deep-buried long tunnel [J]. Journal of 

Coal Science and Engineering (China), 2010, 16(2): 144−149. 

[17] DONG L J, LI X B, PENG K. Prediction of rockburst classification 

using Random Forest [J]. Transactions of Nonferrous Metals Society 

of China, 2013, 23(2): 472−477. 

[18] FRIEDMAN J H. Greedy function approximation: A gradient 

boosting machine [J]. Annals of Statistics, 2001, 29(5): 1189−1232. 

[19] KUHN M, JOHNSON K. Applied predictive modeling [M]. New 

York: Springer, 2013. 

[20] ZHOU J, LI X B, MITRI H S. Comparative performance of six 

supervised learning methods for the development of models of pillar 

stability [J]. Natural Hazards, 2015, 79(1): 291−316. 

[21] BRILLANTE L, GAIOTTI F, LOVAT L, VINCENZI S, GIACOSA S, 

TORCHIO F, SEGADEC S R, ROLLEC L, TOMASI D. 

Investigating the use of gradient boosting machine, random forest 

and their ensemble to predict skin flavonoid content from berry 

physical–mechanical characteristics in wine grapes [J]. Computers 

and Electronics in Agriculture, 2015, 117: 186−193. 

[22] ZHOU J, SHI X Z, LI X B. Utilizing gradient boosted machine for 

the prediction of damage to residential structures due to blasting 

vibrations of open pit mining [J]. Journal of Vibration and Control, 

2015: 1−12. 

[23] GODINHO S, GUIOMA N, GIL A. Using a stochastic gradient 

boosting algorithm to analyse the effectiveness of Landsat 8 data for 

montado land cover mapping: Application in southern Portugal [J]. 

International Journal of Applied Earth Observation and 

Geoinformation, 2016, 49: 151−162. 

[24] YANG R M, ZHANG G L, LIU F, LU Y Y, YANG F, YANG F, 

YANG M, ZHAO Y G, LI D C. Comparison of boosted regression 

tree and random forest models for mapping topsoil organic carbon 

concentration in an alpine ecosystem [J]. Ecological Indicators, 2016, 

60: 870−878. 

[25] KUHN M. Building predictive models in R using the caret package 

[J]. Journal of Statistical Software, 2008, 28(5): 1−26. 

[26] RIDGEWAY G. Generalized boosted models: A guide to the gbm 

package [EB/OL]. [2015−9−15]. http://cran.r-project.org/web/ 

packages/gbm/index.html, 2007. 

[27] R DEVELOPMENT CORE TEAM. R: A language and environment 

for statistical computing [EB/OL]. [2015−9−15]. http://www.R- 

project.org/, 2014. 

[28] CONGALTON R G, GREEN K. Assessing the accuracy of remotely 

sensed data: Principles and practices [M]. 2nd ed. Lewis: Boca Raton, 

FL, 2009. 

[29] HEAL D, POTVIN Y, HUDYMA M. Evaluating rockburst damage 

potential in underground mining [C]//Proceedings of 41st U. S. 

Symposium on Rock Mechanics (USRMS). Golden: ARMA, 2006: 

1020−1025. 

[30] MISICH I, LANG A. Examples of rockburst damage in western 

australia [C]//Proceedings of the Fifth International Symposium on 

Rockburst and Seismicity in Mines (RaSiM5). Johannesburg: South 

African Institute of Mining and Metallurgy, 2001: 59−68. 

[31] DURRHEIM R J, ROBERTS M K C, HAILE A T, HAGAN T O, 

JAGER A J, HANDLEY M F, SPOTTISWOODE S M, ORTLEPP W 

D. Factors influencing the severity of rockburst damage in South 

African gold mines [J]. The Journal of the South African Institute of 

Mining and Metallurgy, 1998, 98(2): 53−58. 

[32] POTVIN Y. Strategies and tactics to control seismic risks in mines [J]. 

The Journal of the South African Institute of Mining and Metallurgy, 

2009, 109(3): 177−186. 

[33] HUDYMA M, POTVIN Y. An engineering approach to seismic risk 

management in hardrock mines [J]. Rock Mechanics and Rock 

Engineering, 2010, 43(6): 891−906. 

[34] PAKALNIS R, VONGPAISAL S. Mine design —An empirical 

approach [C]//In Proceedings International Congress on Mine Design. 

Rotterdam: Balkema, 1993: 455−467. 

[35] MCGARR A. A mechanism for high wall-rock velocities in 

rockbursts [J]. Pure and Applied Geophysics, 1997, 150(3−4): 

381−391. 

[36] QIU S L, FENG X T, ZHANG C Q, XIANG T B. Estimation of 

rockburst wall-rock velocity invoked by slab flexure sources in deep 

tunnels [J]. Canadian Geotechnical Journal, 2014, 51(5): 520−539. 

[37] KOHAVI R. A study of cross-validation and bootstrap for accuracy 

estimation and model selection [C]//IJCAI-95, Proceedings of 14th 

International Joint Conference on Artificial Intelligence. San 

Francisco: Morgan Kaufmann Publishers Inc, 1995: 1137−1143. 

 

随机梯度提升方法预测有岩爆倾向矿山岩爆破坏的可行性 
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中南大学 资源与安全工程学院，长沙 410083 
 

摘  要：基于 254 个岩爆破坏事件数据库，采用随机梯度提升方法(SGB)对岩爆破坏进行分类检验评估。SGB 方

法中选取 5 个可能性相关指标进行评价，包括应力条件因素、地下支护能力、地质构造以及岩爆发生场地质点

峰值振动速度等指标。模型在评价过程中选取 80%的原始数据进行建模并使用 10 倍交叉验证方法评估模型的性

能，然后进行外部测试，用剩余 20%的数据检验 SGB 模型的预测准确性。对于多类问题模型准确性分析采用分

类准确率和科恩 Kappa 系数两种准确性方法。对岩爆破坏的数据准确性分析和 Kappa 系数的分析表明 SGB 模型

分析法对于岩爆破坏预测是可靠的。 
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