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Abstract: The constitutive relation of powder material was derived based on the assumption that metal powder is a kind of 
elasto-plastic material, complying with an elliptical yield criterion. The constitutive integration algorithm was discussed. A way to 
solve the elastic strain increment in each iteration step during elasto-plastic transition stage was formulated. Different integration 
method was used for elastic and plastic strain. The relationship between model parameters and relative density was determined 
through experiments. The model was implemented into user-subroutines of Marc. With the code, computer simulations for 
compaction process of a balancer were performed. The part is not axisymmetric and requires two lower punches and one upper punch 
to form. The relative density distributions of two design cases, in which different initial positions of the punches were set, were 
obtained and compared. The simulation results indicate the influence of punch position and movement on the density distribution of 
the green compacts. 
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1 Introduction 
 

“Cold” compaction, which is operated at room 
temperature, is currently the most generally used 
compacting method in powder metallurgy industry. 
Under this circumstance, metal powder is often 
considered a kind of time-independent, elasto-plastic and 
compressible material[1,2]. Quite a few different models 
have been presented for such kind of material. Some of 
them are characterized by an ellipsoidal yield surface, 
such as KUHN’s[3], GREEN’s[4], SHIMA’s[5], 
DORAIVELU’s[6]. In some other models, ellipsoidal 
surface is used as a cap that composes the whole yield 
surface with another conic surface[7, 8]. GURSON’s, 
FLECK’s and REDANZ’s[2, 9] models are quite 
different from the elliptical models, while the shape of 
the yield surfaces are similar to ellipse and therefore 
simulation results with these models should be close to 
those obtained with elliptical models. CEDERGREN et 
al[10] compared the experimental results and simulation 
results obtained with SHIMA’s model and REDANZ’s 
model and concluded that, as long as the model 

parameters were set properly, both models could produce 
satisfying results. Some kinds of discreet models have 
also been presented and applied in simulation, while the 
large computation capability they require still hinders the 
application in the industry[11,12]. In this study, a general 
form of the constitutive relation of the elliptical models 
is derived, the numerical algorithm is described and 
some simulation results are discussed. 
 
2 Theoretical basis 
 
2.1 Constitutive relation 

Since the stress state of material is independent of 
coordination, the yield criterion of isotropic material can 
be formulated by invariants of the stress tensor. A general 
form of yield criterion used by many investigators is 
 

12
12 =+′ BJJA                                (1) 

 
where  2J ′  is the second invariant of the deviatoric 
stress tensor and J1 is the first invariant of the stress 
tensor. A and B are the parameters of the yield surface. 

Deriving Eqn.(1), yields 
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Let EA=∂A/∂ρ, EB=∂B/∂ρ, then Eqn.(2) can be 
rewritten as 
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In elasto-plastic problems, when associated flowing 

rule is assumed, the relationship between incremental 
stain and stress can be expressed as 
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where  f is the yield function and  is the elastic 
constitutive tensor. Applying Eqn.(5) to Eqn.(4), and 
solve dλ, 
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Applying Eqn.(6) to Eqn.(5) yields the constitutive 

relation: 
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where 
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and  is the plastic matrix, which can be expressed 
as 
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2.2 Constitutive integration 

As a nonlinear problem, the simulation process 
requires an iteration procedure to solve. One of the tasks 
in the iteration is to calculate the incremental stress from 
the incremental strain. 

In each iteration step of the process, if the material 
transits from elastic state to plastic state, it is necessary 
to determine the dividing point of elastic strain and 
plastic strain, since different integration algorithms must 
be applied for them. 

In the stress space, elasto-plastic dividing point is 
the intersection point of yield surface and the stress 
increment. Therefore, it can be solved from the following 
equations: 
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where   is the stress at the beginning of the 
incremental step, 

t
ijσ

ijσ∆  is the incremental stress, and m 
is the percentage of the elastic strain increment in total 
strain increment. Applying the second equation to the 
first one, Eqn.(10) can be rewritten as a quadratic 
equation: 
 
a2m2+a1m+a0=0                             (11) 
 
where 
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where  ijσ ′∆  is the incremental deviatoric stress. 
Eqn.(11) has one positive and one negative root. Herein, 
only the positive one is concerned: 
 

2

20
2
11

2
4

a
aaaa

m
−+−

=                      (13) 

 
With m solved, the elastic strain and plastic strain 

are integrated respectively. The incremental stress in 
elastic stage is calculated directly, 
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The incremental stress in plastic stage is obtained 
with Eulerian formulation, 
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where  k is the total number of integration steps. 
 
2.3 Hardening 

When powder gets denser, the yield surface also 
changes. This relationship can be represented by the 
dependency of A and B on the relative density ρ, written 
as A(ρ) and B(ρ). 

The following relations have been presented based 
on the assumption that material begins to yield when the 
apparent total deformation energy reaches a critical 
value[3,6,14], 
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where  σS is the yield stress of the pore-free material 
and δ is a function of ρ, which should be determined on 
experimental results. Some of the proposals for this 
function are listed in Table 1. 
 
Table 1 Different assumptions of δ(ρ) 
KUHN et al DORAIVELU et al KIM et al[14] In this work
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The above model and different assumptions of δ are 

implemented into user subroutines of MSC.Marc, a 
commercial finite element analysis software. Compared 
the simulated and experimental load vs displacement 
curves, another function which fits better with the 
experimental results is obtained. 

In simulation, the model parameters are set as 
σS=405 MPa, elastic modulas E=210ρ GPa and Poisson’s 
ratio v=0.5ρ2. 

In the experiments, pure iron powders were 
compacted in a die with square horizontal section and 
side length of 10 mm. A test machine, SANS- 
CMT5105.7, was used to conduct the compaction. The 
machine is able to be connected to a computer and record 
the load vs displacement curves of the upper punch. The 
operation was described in detail in Ref.[15]. 

The volume of loose powder was measured and the 

initial relative density was calculated to be ρc=0.458. 
Since loose powder is quite easy to deform, the value of 
ρc should be very close to ρ0. In this study, it was set at 
0.457 9. The friction coefficient on die walls was 
assumed to be 0.1. 

The displacement vs load curves obtained from both 
experiments and simulations are compared in Fig.1. 
 

 
Fig.1 Load vs displacement curves of upper punch 

 
3 Simulation 
 

The compaction process of a balancer was 
simulated. The schematic plot of the die, punches and 
powder is shown in Fig.2. The balancer consists of two 
main parts: a ring to connect with the crankshaft and a 
fan-like part to balance the weight of the crank. The sizes 
of R1, R2 and R3 are constant during the compaction. H1 
and H2 are controlled by punches. Their values are listed 
in Table 2. 
 

 
Fig.2 Cross section of die, punches and powder 
 
Table 2 Sizes of balancer 

Parameter Final value Initial value(case 
1) 

Initial 
value(case 2)

R1/mm 56 − − 
R2/mm 33 − − 
R3/mm 23 − − 

Angle of 140 − − 
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fan-like part/(˚) 
H1/mm 8 8 15.23 
H2/mm 8 19.47 15.23 

 
Two design cases were simulated. In both cases, the 

die, lower punch 1 and core rod were fixed. In the first 
case, lower punch 2 was also fixed. Only the movement 
of upper punch densified the powder. In the second case, 
lower punch 2 was set at a higher position at the 
beginning, and moved downward along with the upper 
punch. The velocities of the lower punch 2 and the upper 
punch were proportional to the initial distances to their 
own final position. 

The simulation was conducted on MSC.Marc. User 
subroutines were written and the model described above 
was implemented. The simulation of the two cases 
shared the same finite element model, with elements at 
the two different parts scaled in the height direction, so 
that initially the powder could fill the whole space in the 
die. Totally 10 063 four-node tetrahedral elements and  
2 285 nodes were included in the model. The calculation 
was divided into 100 incremental steps. About six hours 
were spent on a PⅣ 2.4 GHz machine for each case. 

The relative density distributions obtained in 
simulations for both cases are shown in Figs.3 and 4. In 
case 1, the highest relative density, 0.975, occurs at the 
ring part, and the lowest density, 0.570, is at the inner 
edge of the fanlike part. In case 2, the highest relative 
density, 0.904, is at the upper corner of the fanlike part, 
and the lowest density, 0.843, is at the lower corner of 
the fanlike part. Comparing the two figures, the density 
distribution in case 1 is much more inhomogeneous than 
that in case 2. This contrast shows that the first case is a 
bad design. In the filling stage of this design case, the 
initial position of lower punch 2 is too low to get 
sufficient powder installed into the fanlike part. And 
during compaction, it is difficult for the powder to flow 
to the ring part. Thus, there develops a density variation 
between the two parts. 
 

 
Fig.3 Relative density distribution (case 1) 
 

 
Fig.4 Relative density distribution (case 2) 
 
4 Conclusions 
 

1) The constitutive relation of elliptical yield 
criterion was derived. The constitutive integration 
algorithm was discussed. The relation between model 
parameters and relative density was determined through 
experiments. The model was implemented into 
MSC.Marc user-subroutines. 

2) The compaction process of a balancer was 
simulated. The relative density distributions of two 
different design cases were obtained and compared. The 
simulation results show that the initial positions of the 
punches have great influence on the density distribution 
of the green compacts. To obtain homogeneous green 
compacts, punches should be positioned properly so that 
at the filling stage, sufficient powder can be installed into 
parts where flowing is difficult in compaction process. 
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