

Available online at www.sciencedirect.com

Trans. Nonferrous Met. Soc. China 18(2008) 1134-1138

Transactions of Nonferrous Metals Society of China

www.csu.edu.cn/ysxb/

Effect of BaO addition on electric conductivity of *x*Cu/10NiO-NiFe₂O₄ cermets

HE Han-bing(何汉兵), ZHOU Ke-chao(周科朝), LI Zhi-you(李志友), HUANG Bai-yun(黄伯云)

State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

Received 28 November 2007; accepted 18 March 2008

Abstract: The effects of BaO addition on the phase composition, relative density and electric conductivity of xCu/10NiO-NiFe₂O₄ (x=5, 10) cermets were studied, which were prepared with cold isostatic pressing-sintering process. The results show that the relative densities of 5Cu/10NiO-NiFe₂O₄ cermet doped with 1% BaO (mass fraction) and 10Cu/10NiO-NiFe₂O₄ cermet doped with 1% BaO (mass fraction) and 10Cu/10NiO-NiFe₂O₄ cermet doped with 1% BaO (mass fraction) and 9.75% compared with the undoped BaO cermets, respectively. And the electric conductivities 22.79 S/cm of 5Cu/10NiO-NiFe₂O₄ cermets adding 1% BaO are obtained, which are 2.21 times and 1.47 times of those of undoped samples, respectively. Moreover, the 10Cu/10NiO-NiFe₂O₄ cermets doped with 1% BaO have a maximum σ_0 of 58.91 S/cm and electric conductivity of 23.10 S/cm at 1 233 K. Maybe low melting-point phases of BaFe₂O₄ and Ba₂Fe₂O₅ have an excellent electric conductivity in xCu/10NiO-NiFe₂O₄ (x=5, 10) cermets at 1 233 K.

Key words: Cu/10NiO-NiFe₂O₄ cermet; BaO; inert anode; aluminum electrolysis; electric conductivity; relative density

1 Introduction

Early candidate materials for inert anode had been concentrated on ceramic oxides, alloys and cermets[1]. Recently, cermets have received much attention due to combinative advantages of ceramic materials (low corrosion and oxidation) with metallic materials (high electric conductivity and good thermal shock resistance) [2-3]. Nickel ferrite is one of the most common compounds in a family of spinel with cubic structure. This compound offers a good combination of physical and chemical properties such as high melting-point, good resistance to chemical attack, high thermal stability, and consequently it is the preferred material as ceramics inert anode. But it is well-known that the poor electric conductivities of $xCu/10NiO-NiFe_2O_4$ (x=5, 10) cermets have restricted their application in the inert anode [4-5]. Sintering additive is an effective method to increase cermet densification and electric conductivity. GHOSH et al[6] obtained 99% of relative density in magnesium aluminate spinel sample with adding ZnO as additive and suggested the formation of anion vacancy in the presence of ZnO to improve density and mechanical properties. RITWIK et al^[7] observed that densification temperature for magnesium aluminate spinel decreased by about 100 $^{\circ}$ C with addition of Cr₂O₃ up to 1%. JIAO et al[8] reported a gradual improvement in sintered density for nickel ferrite products by addition of TiO₂ up to 1%. XI et al[9] pointed out that addition of MnO₂ increased the sintering density of nickel ferrite. They also found refined grains and improved thermal shock resistance for MnO₂ containing samples. So it can be seen that sintering additive has great influence on the sintering process and microstructure of composites. XI et al[10] found that when the mass fraction of V_2O_5 was 2%, the conductivity of sample was 7 times that of sample without V₂O₅. TIAN et al[11] have gained that the addition of SnO₂ decreased the activation energy and improved its electrical conductivity. LAI et al[12] reported that when the maximum conductivity of 16.29 S/cm at 1 233 K was obtained for composites doped with 2% CaO (mass fraction), compared with 1.03 S/cm of the undoped composites. ZHANG et al[13] found that the conductivity of NiFe2O4 samples has improved significantly with addition of TiO₂.

Foundation item: Project(2005CB623703) supported by the National Basic Research Program of China; Project(50721003) supported by the National Natural Science Fund for Innovation Group of China

Corresponding author: HE Han-bing; Tel: +86-731-8830464; E-mail: hehanbinghhb@163.com

In this study, the effects of BaO addition on the relative density, microstructure and electric conductivity of $xCu/10NiO-NiFe_2O_4$ (x=5, 10) cermets were investigated.

2 Experimental

2.1 Preparation of BaO doped xCu/10NiO-NiFe₂O₄ composites

xCu/10NiO-NiFe₂O₄ (*x*=5, 10) and xCu/10NiO-NiFe₂O₄ (*x*=5, 10) cermets doped with 1% BaO were prepared by the conventional method with reagent grade raw materials of Fe₂O₃, NiO and BaO. The mixture of Fe₂O₃ and NiO in molar ratio of 1.35 was calcined in a muffle furnace at 1 200 °C for 6 h in air to form 10NiO-NiFe₂O₄ ceramic powders. X-ray diffraction results of 10NiO-NiFe₂O₄ ceramics are shown in Fig.1. The synthesized powders, Cu and BaO powders were ground in the mediums containing dispersant and adhesive. The dried mixture was compacted at 200 MPa to get cylindrical blocks (*d* 20 mm×45 mm). Then the *x*Cu/10NiO-NiFe₂O₄ (*x*=5, 10) and *x*Cu/10NiO-NiFe₂O₄ (*x*=5, 10) cermets doped with 1% BaO were sintered at 1 200 °C for 4 h in nitrogen atmosphere[14].

Fig.1 XRD pattern of 10NiO-NiFe₂O₄ composite ceramics

2.2 Characterization

The phase compositions were identified by X-ray diffraction analysis using Philips PW1390 X-ray diffractometer with Cu K_{α} radiation. Microstructure was analyzed with JSM-6360LV scanning electron microscope equipped with EDX-GENESIS energy dispersive spectrometer. Bulk densities were tested according to the Archimedes' method. High temperature electric conductivities based on the conventional direct current four-electrode technique were tested using experimental furnace (Fig.2)[12] by treating powder at a heating rate of 5 °C/min in air.

Fig.2 Drawing of experimental furnace for high temperature electric conductivity test: 1—Press sensor; 2—Super cover; 3—Sintered alumina plate; 4—Super electrode for current conduction; 5—Furnace; 6—Pressing handle; 7—Voltage measuring side electrode; 8—Specimen; 9—Bottom electrode for current conduction; 10—Steel pedestal; 11—Gas inlet; 12—Steel tram road for super cover to move; 13—Steel crossbeam for super cover to move; 14—Pt/Pt210%Rh thermocouple, with sintered alumina sheath; 15—Insulating tram road for electrode to move

3 Results and discussion

3.1 Effect of BaO addition on relative density and microstructure

The relative densities of $xCu/10NiO-NiFe_2O_4$ (x=5, 10) and $xCu/10NiO-NiFe_2O_4$ (x=5, 10) cermets doped with 1% BaO are listed in Table 1. The relative densities of 5Cu/10NiO-NiFe_2O_4 and 10Cu/10NiO-NiFe_2O_4 cermets doped with 1% BaO sintered at 1 200 °C in nitrogen atmosphere, were increased by about 9.86% and 9.75% compared with the undoped BaO cermets, respectively. Possibly because BaO causes the presence of inherent oxygen vacancy of $xCu/10NiO-NiFe_2O_4$ (x=5, 10) cermets, which helps the transportation of oxygen ion, greater extent of atomic diffusion and greater mass transportation and densification results in[15].

Fig.3(a) and Fig.4(a) illustrate the SEM images of $5Cu/10NiO-NiFe_2O_4$ and $10Cu/10NiO-NiFe_2O_4$ cermets, respectively. It can be seen that with metallic copper contents increasing, the relative densities of samples don't change. However, the relative density of sample doped with 1% BaO has a rapid improvement according to Table 1, and sample doped with 1% BaO shows almost

HE Han-bing, et al/Trans. Nonferrous Met. Soc. China 18(2008)

Table 1 Relative density and electric conductivity of xCu-10NiO-NiFe₂O₄ cermets and xCu-10NiO-NiFe₂O₄ cermets doped with 1%BaO

$w(\mathbf{D}_{\mathbf{a}}\mathbf{O})/\theta/$	w(Cu)/0/	Relative				E	lectrical	conduct	ivity/(S∙	cm^{-1})			
W(BaO)/%	W(Cu)/%	density/%	303 K	373 K	473 K	573 K	673 K	773 K	873 K	973 K	1 073 K	1 173 K	K 1 233 K
0	5	88.35	0.593	0.847	1.326	2.607	3.632	4.710	5.015	5.690	7.621	9.102	10.30
1	5	98.21	1.904	2.414	3.855	5.710	7.546	10.03	13.55	17.59	20.79	21.63	22.79
0	10	88.44	0.715	0.969	1.903	3.542	5.368	6.494	8.218	9.150	12.11	14.39	15.63
1	10	98.19	1.676	2.404	3.675	6.528	9.121	11.98	16.10	19.84	22.97	24.89	23.10

Fig.3 SEM images of cermets at 1 200 °C: (a) 5Cu/10NiO-NiFe₂O₄ cermet; (b) 5Cu/10NiO-NiFe₂O₄ cermet doped with 1% BaO

full densification due to the tight combination of particles and removing of pores (Fig.3(b) and Fig.4(b)). Based on the thermodynamic calculation, BaO can react with NiFe₂O₄ at about 1 000 °C to generate BaFe₂O₄ and Ba₂Fe₂O₅[16]. Liquid phase appears below 1 200 °C.

 $BaO+NiFe_2O_4 = BaFe_2O_4+NiO$ (2)

$$2BaO+NiFe_2O_4 = Ba_2Fe_2O_5+NiO$$
(3)

So samples doped with BaO achieve densification by means of dissolution and separation of this liquid phase, which was used as transferred carrier to accelerate mass mobility and viscous flow.

3.3 Electric conductivity of BaO doped xCu/10NiO-NiFe₂O₄ composites

Table 1 and Fig.5 display the electric conductivities

Fig.4 SEM images of cermets at 1 200 °C: (a) 10Cu/10NiO-NiFe₂O₄ cermet; (b) 10Cu/10NiO-NiFe₂O₄ cermet doped with 1% BaO

of samples doped with 1% BaO. From Fig.5 and Table 1, the electric conductivities for samples doped with BaO are apparently higher than those of undoped samples.

This implies that addition of BaO has an active effect on electric conductivity of $xCu/10NiO-NiFe_2O_4$ (x=5, 10) cermets. The electric conductivities(σ) 22.79 S/cm of 5Cu/10NiO-NiFe₂O₄ cermets adding 1% BaO and 23.10 S/cm of 10Cu/10NiO-NiFe₂O₄ cermets adding 1% BaO are obtained, which are 2.21 times and 1.47 times those of undoped sample, respectively.

10NiO-NiFe₂O₄ ceramics prepared is one kind of ntype semiconductor materials containing oxygen vacancy. Thus, the function of electric conductivity σ and temperature *T* is described as follows:

Fig.5 σ —*T* plots of *x*Cu-10NiO-NiFe₂O₄ and *x*Cu-10NiO-NiFe₂O₄ cermets doped with BaO in air

$$\sigma = \sigma_0 \exp[-E/(2KT)] \tag{4}$$

where *E* is the electric activation energy; *K* is the Boltzmann constant; σ_0 is similar with one constant in the range of experimental temperature, which is determined by the following factors: concentration of current carrier *N*; electron quantity *q*, transition frequency δ , average transition distance v_0 and ambient temperature *T*:

$$\sigma_0 = Nq^2 \delta^2 v_0 / (kT) \tag{5}$$

The fitting results of $\ln \sigma - T$ linear relations for xCu/10NiO-NiFe₂O₄ (x=5, 10) cermets and xCu/10NiO-NiFe₂O₄ (x=5, 10) cermets doped with 1% BaO, which were sintered at 1 200 °C, are listed in Table 2. It is observed that σ_0 of xCu/10NiO-NiFe₂O₄ (x=5, 10) cermets doped with 1% BaO is higher than that of the undoped samples, and *E* is lower than that of undoped samples, possibly because BaO, BaFe₂O₄ and Ba₂Fe₂O₅

Table 2 Fitting results of $\ln \sigma - T$ linear relations for xCu-10NiO-NiFe₂O₄ and BaO/xCu-10NiO-NiFe₂O₄

w(BaO)/%	w(Cu)/%	$\sigma_0/(\mathrm{S}\cdot\mathrm{cm}^{-1})$	E/eV			
0	5	21.28	0.24			
1 5		46.97	0.22			
0	10	37.54	0.27			
1	10	58.91	0.24			
Correlatio	on factor	Electrical conductivity at 1 233 K/(S·cm ⁻¹)				
98.	46	10.30				
97.	48	22.79				
98.	79	15.63				
98.	44	23.10				

decrease electric activation energy and increase electric conductivity. Moreover, the $10Cu/10NiO-NiFe_2O_4$ cermets doped with 1% BaO have a maximum σ_0 of 58.91 S/cm and electric conductivity of 23.10 S/cm at 1 233 K. Maybe low melting-point phases of BaFe_2O_4 and Ba_2Fe_2O_5 have an excellent electric conductivity in *x*Cu/10NiO-NiFe_2O_4 (*x*=5, 10) cermets at 1 233 K.

4 Conclusions

1) The relative densities of 5Cu/10NiO-NiFe₂O₄ and 10Cu/10NiO-NiFe₂O₄ cermets doped with 1% BaO sintered at 1200 °C in nitrogen atmosphere, are increased by about 9.86% and 9.75% compared with undoped BaO cermets, respectively.

2) The electric conductivities 22.79 S/cm of 5Cu/ 10NiO-NiFe₂O₄ cermets adding 1% BaO and 23.10 S/cm of 10Cu/10NiO-NiFe₂O₄ cermets adding 1% BaO are obtained, which are 2.21 times and 1.47 times those of undoped sample, respectively.

3) σ_0 of xCu/10NiO-NiFe₂O₄ (x=5, 10) cermets doped with 1% BaO is higher than that of undoped samples, and *E* is lower than that of undoped samples. Moreover, 10Cu/10NiO-NiFe₂O₄ cermets doped with 1% BaO have a maximum σ_0 of 58.91 S/cm and electric conductivity of 23.10 S/cm at 1 233 K.

References

- GRAY P T. Corrosion and passivation of cermet inert anodes in cryolite-type electrolytes [J]. Light Metals, 1986: 309–320.
- [2] LIU Y X. Advance on the research and development of inert anode and wettable cathode in the aluminum electrolysis [J]. Light Metals, 2001(5): 26–29. (in Chinese)
- [3] PAWLEK R P. Inert anodes: An update [J]. Light Metals, 2002: 449–456.
- [4] ZHANG Gang, LAI Yan-qing, TIAN Zhong-liang, QIN Qing-wei, LI Jie, LI Wen-xian. Preparation of nickel ferrite based cermets for aluminum electrolysis [J]. Journal of Materials Science and Engineering, 2003, 21(4): 44–47. (in Chinese)
- [5] TIAN Zhong-liang, LAI Yan-qing, ZHANG Gang, QIN Qing-wei, WANG Jian-feng, LI Jie, LIU Ye-xiang. Preparation of NiFe₂O₄-Cu based cermet inert anodes in aluminum electrolysis [J]. The Chinese Journal of Nonferrous Metals, 2003, 13(6): 1540–1545. (in Chinese)
- [6] GHOSH A, DAS S K, BISWAS J R, TRIPATHI H S, BANERJEE G. The effect of ZnO addition on the densification and properties of magnesium aluminum spinel [J]. Ceramics International, 2000, 26(6): 605–608.
- [7] RITWIK S, KUMAR D S, GOUTAM B. Effect of addition of Cr₂O₃ on the properties of reaction sintered MgO-Al₂O₃ spinels [J]. Journal of the European Ceramic Society, 2002, 22(8): 1243–1250.
- [8] JIAO Wan-li, ZHANG Lei, YAO Guang-chun, LIU Yi-han. Sintering process of NiFe₂O₄ spinel with and without TiO₂ adding [J]. Journal of the Chinese Ceramic Society, 2004, 32(9): 1150–1153. (in Chinese)
- [9] XI Jin-hui, LIU Yi-han, YAO Guang-chun. Effect of MnO₂ on properties of inert anode of NiFe₂O₄ spinel [J]. Journal of Functional

1138

Materials, 2005, 3(36): 374-376. (in Chinese)

- [10] XI Jin-hui, YAO Guang-chun, LIU Yi-han, ZHANG Xiao-ming. Effect of additive vanadic oxide on conductivity of nickel ferrite-based cermets inert anodes [J]. Journal of the Chinese Ceramic Society, 2006, 34(1): 34–38. (in Chinese)
- [11] TIAN Zhong-liang, LAI Yan-qing, DUAN Hua-nan, SUN Xiao-gang, ZHANG Gang. Effect of adding SnO₂ on electrical conductivity of nickel ferrite ceramics [J]. Conservation and Utilization of Mineral Resources, 2004(5): 37–40. (in Chinese)
- [12] LAI Yan-qing, ZHANG Yong, ZHANG Gang, LI Jie, HE Yue-hui, HUANG Bai-yun, LIU Ye-xiang. Effect of CaO doping on densification of 10NiO-NiFe2O4 composite ceramics [J]. The Chinese Journal of Nonferrous Metals, 2006, 16(8): 1355–1360. (in Chinese)
- [13] ZHANG Jian-hong, LIU Yi-han, XI Jin-hui, YAO Guang-chun.

Study on high-temperature electrical conductivity of NiFe₂O₄ spinel with TiO₂ [J]. Journal of Materials and Metallurgy, 2003, 2(4): 271-273. (in Chinese)

- [14] LAI Yan-qing, ZHANG Gang, LI Jie, LIU Ye-xiang. Effect of adding Cu-Ni on mechanical capacity and electrical conductivity of NiFe₂O₄-based cermets [J]. Journal of Central South University of Technology (Natural Science), 2004, 35(6): 880–884. (in Chinese)
- [15] LIU W Y, LIU X G. The influence of sintering atmosphere on densification of ZTM/SiC composite [J]. Journal of Shanghai University, 1996, 29(5): 721–726. (in Chinese)
- [16] ZHANG Sheng-bi, LI Dai-zi. Phase diagram—Principle, calculation and application in metallurgy [M]. Beijing: Metallurgical Industrial Press, 1986.

(Edited by LI Xiang-qun)