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Abstract: The temperature dependence of strain and strain rate of the Zrg; TiyyCuyp sNijoBess s( Vitl) bulk metallic
glass (BMG) under constant heating condition was derived from the static extension method with a dynamic thermal me-

chanical analyzer (DM A). A few strain rate peaks, which corresponds to the glass transition and multistep crystallization
in the differential scanning calorimeter ( DSC) examination, were observed in the curves of the relation between strain rate

and temperature. The onset of viscous flow and the end of glass transition are interrelated, the first and second strain rate

peaks correspond with the first and second crystallization transition processes, respectively. The influence of stress on

strain and strain rate was researched. It is found that the rheological behaviour of BMG Vitl changes from elasticity to

anelasticity, finally to the Newtonian viscous flow along with increasing temperature.
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1 INTRODUCTION

Since the first success of preparing an amorphous
phase in AuSi system by rapid solidification in 1960
by Duwez et al''!, large numbers of works had been
dealing with the structure transformation and proper
ties of metallic glasses. However, the investigation on
structure transformation and property in undercooled
liquid state was not available because conventional
metallic glasses have not distinct glass transition and a
wide supercooled liquid region (SLR). Up to recent
decade, a series of multicomponent metallic alloys

such as LaAFNi?, P&ENFCwrP®, ZrAFN+CulY

and Zr-Tr Cur Nt Bel®! with superior glassforming a
bility and high thermal stability against crystallization
were discovered. Such metallic glasses provided per
fect experimental materials for investigation of struc
ture transformation and many physical property in
metallic glass.

Among these new bulk glasses forming metallic
alloys, Zrs1 Tis Cuiz.5 Nijg Bezo. s is by far the best
glass former, with a critical cooling rate of approxi-
mately 1 K/s!®,
with respect to crystallization in its wide SLR and can

This alloy exhibits high resistance

be cast in sizes of up to 2 ¢cm to 4 cm in thickness. A
lot of experiments' ©"!! have shown that in this alloy,
the primary crystallization is preceded by phase sepa

ration in the SLR. The material exhibits superplastic
flow above its glass transition temperature ( 623 K)
-2l In addition, the

high yield stress' ™ and the high strength to density

and strain rates of up to 1 s

ratio of BMG Vitl make the material an excellent

candidate for structural applications. A lot of its ther
mophysical properties such as heat capacity! ", diffu-
sion ! crystallization kinetics''® and viscosity [Plad
been well investigated.

For its deformation behavior, the previous stud-
ies mostly made use of both uniaxial compres-

(12.17.18] and three point beam-bending! .

sion How-
ever, it is seldom reported that the extension method
has been applied to study the deformation of BMG
Vitl. In this article, a static extension method is
used to study the rheological processes of BMG Vitl,
and associated with the results of differential scanning
calorimetry ( DSC) measurements. The correlation
between structure transformation and property is also

discussed.
2 EXPERIMENTAL

The glassy bulk metallic ingots, with composi-
tion of Zrai Tii4 Cuin.5 NijoBex. s, were prepared by
melting a mixture of elements of purity range from
99. 5% to 99. 9% under a titanium-gettered argon at-
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mosphere, then amorphous rods with the diameter of
14 mm were prepared by water quenching in silica
tube. The amorphous nature of the as quenched rods
was ascertained with XRD. The experimental sam-
ples with sizes of 10 mm X 1 mm X 0. 5 mm were cut
from the amorphous rods. In order to eliminate the
structure difference, the experimental samples were
firstly heated above the glass transition temperature
633 K for 10 min. The amorphous nature of the pre-
annealing sample was approved with the XRD again.

The static extension measurement of amorphous
sample was carried out on a Perkin Elmer Pyris
DMA7e dynamic thermal mechanical analyzer
(DMA) under flowing argon atmosphere. The sam-
ple was loaded under room temperature, and then
heated at the rate of 2.5, 5, 10 and 15 K/ min, re
spectively. The relation between the sample length
and temperature was recorded synchronously. In or
der to study the stress effect on strain and strain rate,
the applied loads on the samples were 200, 800, 1
600 and 3 200 mN, respectively. The length accura
cy of this experiment was 50 nm. The furnace of
the DMA was calibrated for temperature with high
purity indium and zinc with an accuracy of F( 1~ 2)
K.

The differential scanning calorimetry ( DSC)
measurements were employed under purified argon at-
mosphere in the Perkin Elmer DSC 7 at the heating
rate corresponding to the static extension measure-
ment. The calorimeter was calibrated for temperature
at various heating rates with high purity indium and
zinc with an accuracy of +0. 1 K. The values of the
end temperature of glass transition, T yend, the onset
temperature for multistep crystallization peak,
T yi-onset, Were determined from the DSC traces with
an accuracy of X1 K . The apparent activation ener-
gy E for the glass transition and the crystallization
transition can be evaluated by Kissinger s equation:

2
In "%: ]_{Ef+ const (1)

where T stands for T yend O T xj-onset, P is the scan-
ning rate in DSC, R is the gas constant. The appar
ent activation energy E can be deduced from the slope

in curve of In(T%/ @) vs 1/ T.
3 RESULTS AND DISCUSSION

3.1 Glass transition and crystallization processes
The temperature dependences of strain ( € and
strain rate (d & d¢) for BMG Vitl is shown in Fig. 1.
In the curve, it can be seen that the bulk metallic
glass undergoes the glass state, supercooled liquid
state and crystallization states in temperature range
from room temperature to 760 K. In different tem-
perature range, the temperature dependences of strain
and strain rate are different. In the temperature range
from room temperature to the onset temperature of
viscous flow, T, the strain and strain rate increase

slowly with elevation of temperature. But the strain
and strain rate increase rapidly with increasing tem-
perature in the temperature range from the onset tem-
perature T'; of viscous flow to 760 K. It is seen that
some strain rate peaks, marked as pi, pi-», p2 and
p3, respectively, appear on temperature —strain rate

curves. The values of the peak temperature are T ;=

669.9 K, Tpi-b= 692K, Tp=715.5K and T ;3=

739. 1 K, respectively. In DSC curve at the same
heating rate, the characteristic temperatures of multi-
step crystallization are T i-onset= 609. 4 K, T yibonset
= 690.2 K, Tironsee = 715. 4 K and T 3onse =

740. 5 K, respectively. Thus it can be shown that the
strain rate peaks are associated with the processes of
multistep crystallization of BMG Vitl.
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Fig. 1 Temperature dependence of
strain and strain rate for BMG Vitl

The temperature dependence of the strain rate of
the BMG Vitl at various heating rates is shown in
Fig. 2(a).

temperature T, and increases sharply with tempera-

The strain rate changes significantly at

ture increasing. But at temperature T i, the first
strain rate peak pj is formed, subsequently the strain
rate starts to decrease. The DSC curves at heating
rate corresponding to extension measurement are
shown in Fig. 2(b). It can be seen from the above
mentioned two figures that the temperature depen-
dence of the strain rate is well consistent with the cor
responding DSC curves. Table 1 indicates the charac
teristic temperatures of glass transition and crystal-
lization as well as the activation energy for BMG Vitl
obtained from the curves of DSC and strain rate. It
shows that the onset temperature of viscous flow,
T, the first and second strain rate peak tempera-

tures, T piand T, correspond respectively with the
end temperature of glass transition 7,4, the onset
temperatures for the first and second crystallization
peak, T yi-onset and T x2onset. Furthermore, the activa
tion energies and their corresponding parts are ap-
proximately equal. Therefore it can be concluded that
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the onset of viscous flow and the end of glass transi
tion are interrelated, the first and second strain rate
peaks correspond with the first and second crystalliza-
tion transition processes, respectively. It is noticeable
that at the heating rate of 2. 5 K/min, the first
exothermal crystallization peak in the DSC curves
breaks into two peaks p; and pi,. The microcosmic
transformation process also appears in the strain rate
curves, namely, the corresponding maximums of the
strain rate, pj and pi-; occur.
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Fig.2 Temperature dependences of strain

rate curve (a) and DSC curves (b) for
BMG Vitl at various heating rates

Table 1 Characteristic temperature and activation
energy of glass transition and crystallization
for BMG Vitl gained from curves of DSC

and strain rate, respectively

Heating DSC curve Strain rate curve
ool (B Pl Tavomsl T o]
i 1) gignd xllznsel XZ‘IErlsel Tg/ K T}f)l/ K T‘[/,z/ K
2.5 644.1 669.4 715.4 645.2 669.9 715.5
5 654.5 681.8 720.5 654.4 680.2 719.2
10 665.4 693.6 729.5 666.5 692.4 728.9
15 670.0 700.6 733.0 671.6 702.3 731.5
E/(k
/IE 1‘: 232.4  213.0 409.9 227.6 206.5 429.3
mo

The observational results in both DSC and static
extension measurement, in the final analysis, are due
to the microstructure transformation of Vitl BMG.
Under continuous heating condition, one endothermal
and three exothermal peaks appear in DSC curves (as
shown in Fig. 2(b)). The endothermal peak is associ-
ated with glass transition process which is accompa-
nied by structure transformation from solid state to
supercooled liquid state. Three exothermal peaks are
associated with multistep crystallization. The primary
crystallization in Vitl BMG results in the formation
of spatially periodical arranges of CurT1i rich nanocrys-
tals which is preceded by a modulated chemical de-
composition process. Subsequently, at higher temper-
ature, a Laves phase having the hep MgZnytype

structure appears!'”. The transformation process of
microstructure also results in change of mechanical

property such as strain rate in Fig. 2(a).

3.2 Rheological process

From Fig. 1 it can be inferred that the rheologi-
cal characters of BMG Vitl above and below the onset
temperature of viscous flow are distinctly different.
So the rheological behavior can be investigated in the
two temperature range divided by T';.

3.2.1 Elasticity and anelasticity below T’

Fig. 3 shows the effect of stress on strain in tem-
perature range below T,. The relation between stress
and strain in low temperature range is different from
high temperature range. Below 573 K the stress de-
pendence of the strain complies with the Hooke s
law, namely, 0= E€(E is the elastic modulus). In
Fig. 3 the stress dependences of the strain at 513 K,
533 K and 548 K are drawn as example. The results
illuminate that the Vitl exhibits elastic behavior be-
low 573 K. However, as a result of anelasticity of the
BMG Vitl, the stress dependences of the strain de-
flect from the linear relation above 573 K and the de-
gree of departure increases with increasing tempera
ture.

Below T, under static invariant stress condi
tion, the overall strain of metallic glass can be ex-

pressed as! ?:

[0) 0]
& &+ &= o+

-5

€ is the anelastic

1- exp

where & is the elastic strain,
strain, G is the shear modulus of the material, G, is
the shear modulus of anelastic deformation, 7T is the
relaxation time of strain under invariant stress condi-
tion.

The relation between stress and strain in Fig. 3
can be well explained by Eqn. (2). At lower tempera
ture, because of the low movement ability of atom,
the relaxation time T is so long that the second term
in Eqn. (2) equals approximatively zero, namely, €
~ 0/ G, indicating that the rheological character ex-
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Fig. 3 Stress dependence of strain below onset
temperature of viscous flow T,

hibits elasticity. In higher temperature range, the re-
laxation time T is shortened significantly because the
movement ability of atom is enhanced distinctly, so
the contribution of the anelastic strain in metallic
glasses to overall strain is too great to be neglected, i.
e. the stress dependence of overall strain deflects from
the linear relation. The higher the temperature is,
the less the relaxation time T, the more the anelastic
strain, and the more the stress dependence of overall
strain deflects from the linear relation.

3.2.2 Newtonian viscosity above T,

In order to study the rheological character of
BMG Vitl above T, the temperature dependence of
strain rate (d & d¢) under various stress( 0) condition
was measured (as shown in Fig. 4). For different
stresses, the positions of the strain rate peaks seem
not to change, and the higher the stress level, the
higher the strain rate peak is. Moreover, it is seen
from Fig. 5 that a linear relation exists betw een strain
rate and stress. The results show that the stress de-
pendence of strain rate accords with the Newtonian
rheological law and can be expressed as:

- av bo (3)
where @ and b are fitting parameters. The first

term, a, which is independent of the stress, is due to
the contribution from the structure relaxation of su-
percooled liquid. We deduced from linear fitting the
values of @ and b, — 2.96x 10°° s* ! and 6. 33 x
100° Pa™ 's™ !, respectively. So the rheological be-
havior of BMG Vitl exhibits the character of Newto-
nian viscous flow in supercooled liquid state. Nieh!'®!
reported similar result in other BMG ZrioAlsTi17.9
Cuia, 6N 1525 system.

Thus it can be seen that, with increase of tem-
perature, the rheological processes change from elas-
ticity to anelasticity, finally to the Newtonian viscous
flow in BMG Vitl.

For Newtonian viscous flow, the stress ( 0) de

6
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Fig. 4 Influence of stress on strain
rate for BMG Vitl
6 Heating rate of 5 K/min
T
&
5 4r
2
&
=
.g 2 .
7
0 -
1 1 1 1 1 i

0 2 4 6 8 10
Stress/MPa

Fig.5 Stress dependence of strain rate at peak
temperature (680 K)

pendence of strain rate (d & dt) can be expressed as:
de_ o (4)
d: 37
where Il is viscosity. From Eqn. (4) it is known
that the maximum of strain rate corresponds with the
minimum of viscosity.
According to the classical theory, the crystal nu-
cleation rate per unit volume, /,, and the growth of

the nuclei, u, are described by[m

I A 1o 5
=N T 3,7 (ag)” ()

_ ksT ) _V_Agl
u= 32 1- exp ke T (6)
where A, is a constant of the order of 10°* Pa*s/

(m’+s) for homogeneous nucleation, M is the viscosi-
ty, Ag is the difference in Gibbs free energy (per u-
nit volume), kg is Boltzmann constant, O is the in-
terfacial energy between the liquid and the nuclei, [
is the average atomic diameter and V is the atom vol-
ume.
Generally, the start of crystallization process

takes place at the easiest position for nucleation and
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the growth of the nuclei, i.e. I, and u reach maxi
mum. By Eqns. (5) and (6), the maximum values of
I, and u correspond with the minimum of viscosity,
namely, the maximum of strain rate. Thereby the
strain rate reaches the maximum at the onset temper-
ature for multistep crystallization peak.

4 CONCLUSION

The temperature dependence of strain and strain
rate of BMG Vitl under constant heating condition
was derived from the static extension method with
DMA. A few strain rate peaks, which correspond to
the glass transition and multistep crystallization in the
DSC curves, were observed in relative curves between
strain rate and temperature. The onset of viscous flow
and the end of glass transition are interrelated, and
the first and second strain rate peaks correspond with
the first and second crystallization transition process-
es, respectively. By studying the effect of stress on
strain and strain rate, it is found that the rheological
behaviour of BMG Vitl changes from elasticity to
anelasticity, finally to the Newtonian viscous flow a
long with increasing of temperature.
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