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Analytical solution for coupled diffusion of
three- components liquid in porous pellet®
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Abstract: The coupled three components liquid diffusion within a porous pellet was investigated. The coupled dif-
fusion model was given according to irreversible thermodynamics, and the rigorous solutions of the model subject to
the homogeneous boundary conditions of the first kind are derived by employing Hankel transform technique and the
standard technique resolving ordinary differential system. The method can also be used to solve the other coupled
diffusion problems within a pellet with different kinds of boundary conditions. Then the case computations were con-
ducted. The calculation results show that the effect of interdiffussion on the concentration of components depends
upon the diffusion time strongly, after a long diffusion period, a very small cross diffusion coefficient will induce the
observable change of concentration profile, and that, when the cross coefficients are close to 5% ~ 7% of the main
coefficients, the significant effect of coupled diffusion on the concentration profiles of components is observed. The
case computations also show that interdiffussion can induce non monotonous concentration profiles. So, for the dif-

fusion taking place within ternary system, the concentration profiles obtained by the analysis of interdiffussion can
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be very different from that obtained by the equivalent binary system analysis method.
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1 INTRODUCTION

Diffusion in liquid in presence of multr
components is common in engineering practice, for
example, the separation operation as liquid-liquid
extraction, gas absorption and distillation. Many
phenomena in nature, even in organism bodies, are
dealt with, such as the diffusion of air in rivers and
salt in blood. Because the diffusion in ternary sys-
tem is more common, much attention has been, re-
cently, paid to it. Van den Berg et al''' reviewed in
detail the developments in membrane separation.
Nagata et al'” investigated the diffusion in ternary
system associated with metallurgy processes. Pali-
cia et al'” studied the diffusion of three-component
liquids in food. However, the new developments
on the diffusion in ternary systems are still found
seldom in literatures. Bochet et al'¥ proposed a
method for calculating interdiffusion coefficients by
inverse numerical computation. Oleg et al” sug-
gested that the available experimental data on the
diffusion in ternary system should be verified by
Onsager s reciprocal relations. So far, it is the
common method that the diffusion in ternary sys-

tem are studied as the equivalent binary system'®,

owing to the complexity of the interdiffusion prob-
lems in theory and especially in experiment in ter-
nary system. The diffusion of three-component
fluids in porous media is also common. Xin et al'”!
reported the effective diffusivities of gas in porous
media. Most of gassolid heterogeneous noncata
lytic reactions in metallurgy are associated with the
intraparticle diffusion of ternary gases. Although
the metallurgy kinetics is a mature field, the intra
particle coupled diffusion of ternary gases is ig-
nored completely in the study of the kinetics of a
single particle so far. For example, Muchi et al'®
reported the kinetics of a single particle associated
with reaction system of aA(g)+ bB(s)= ¢C(g)+

dD(s) without considering the intraparticle cou-
pled diffusion of ternary gases. Patisson et al'”,
Eddings et al', Hindmarsh et al''' also ignored
the interaction between gaseous reactant and prod-
uct in the investigation of the overall rate of a sin-
gle pellet. Likewise, at the reactor level, the dif-
fusion of trircomponents fluids is often neglected.

For example, in spite of the presence of ternary

. 12 13
gases, Winkelman et al'”, Boaventura et al'l
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neglected the coupled effect between the gaseous
reactant and gas product in their investigation on
the mass transfer within reactor.

According to irreversible thermodynamics' "',
the diffusion flux of the ith species depends on not
only the gradient of chemical potential itself but al-
so that of all others in the system. In this paper,
the coupled diffusion of three-components liquid in
a porous pellet is studied. First, the model of cou-
pled diffusion is given, then, the exact solution of
the problem is derived, and finally the impacts of
the interaction of diffusion between different com-
ponents are discussed.

2 MODEL OF COUPLED DIFFUSION IN PEL-
LET AND ITS ANALYTICAL SOLUTION

Consider the mass transfer in a porous pellet in
presence of three gas components and in absence of
convection and chemical reaction. If solvent is taken as
the third species, the mass fluxes for two solutes ac
cording to irreversible thermodynamics are

R
Ji=-Dun W D 5* 5 (1)
J2=- Dxn %— Dzz%f (2)

Here, the assumptions that the diffusions in
ternary system take place under the isothermal
condition, and that diffusion coefficients are inde-
pendent of solution concentrations, i. e. they are
have been employed. In Eqns. (1) and
(2), Du and D2 are main diffusion coefficients of
components 1 and 2, respectively, which represent
the effects of the concentration gradient of specific
components on the diffusions themselves. D12 and

constants,

D21 are cross diffusion coefficients, which repre-
sent the interactions of the diffusion between com-
ponent 1 and 2.

To a pellet, the mass conservations in spheri-

cal coordinate without reaction and convection are

b 580 T8 ™
o= G 2B
bl 580 TG g

Eqns. (3) and (4) are coupled and can be
solved after initial and boundary conditions are
specified. The asymptotical solutions of Eqn. ( 3)
and (4) have been obtained by using perturbation
method in Ref.[15]. However, the rigorous solu-
tions for Eqns. (3) and (4) exist. Here, we devote
to the derivation of rigorous solutions of Eqns. (3)
and (4).

T he initial conditions are

Analytical solution for coupled diffusion of three-components liquid < 177 -
t= 0, ci(r, 0)= cwo; c2(r, 0)= c2 (5)
where subscript 10 denotes component 1 at t= 0O;

20 denotes component 2 at the same time. Bounda-
ry conditions on the surface of pellet are

ci(R, t)=0; c2(R, t)=0 (6)
where subscripts 1 and 2 denote components 1
and 2, respectively.

Because of the symmetry, the fluxes of the
mass of components 1 and 2 are always zero at the
center of the pellet, that means

Ocy Oc B

IDII ar + D ar o = 0,
Oc1 ocz

|D21 2 + Dp 22 ol |, 0

Then Eqn. (7) can be derived easily from the
above two equations

da| _ ) 2a | _
Or lo ™ 0, or l-o 0 (7)
Eqns. (3)7(7) are the coupled diffusion model
with homogeneous boundary condition of the first
kind.
Introducing new functions in the form
wi(r, t) = rei(r, t) (8)
wa(r, t) = reafr, t) (8)
By differentiating Eqns. (8) and (&), the fol-
lowing formula can be derived easily

10w Ou
r Ot Ot (9
_]_@2._ &2 /
r Ot O (9)
18w, QPa 20a
e = » (10)
1 Pwa _ Lz 2 O (10)
roort T or r Or
Substitution of Eqns. (9), (9) and Eqns.
(10), (10') into Eqns. (3) and (4) yields
2

8%: D 5au;21+ D> w (11)

2 2
ga—gtzz D2 aaTL+ DzzaaTZ (12)

From Eqns. (8) and (8) and Eqns. (5)~(7),
the initial and boundary conditions for w1, w2 can

be derived

t= 0 uu(r, 0) = rcio,

walr, 0) = reo 0 Sr< R (13)
r= R wi(R)= 0; W2(R)= (14)
r=0 wi(0)= 0; w2(0) =0 (15)
Eqns. (11) 7(15) are basically the same equa-

tions as Eqns. (3)7(7), but, now, they are in the
rectangular coordinate system with variables wi
The coupled problems ( 11) 7( 15) can be
resolved analytically.

and wo>.

We employ first Hankel transform technique
to remove the partial derivatives with respect to
. It is well known from Refs. [ 16,
17] that the eigenvalue problem corresponding to

Eqns. (11)=(15) is

. 16
space variable' '



<178 + Trans. Nonferrous Met. Soc. China

Feb. 2005

2
'gx_(f+ Beé= 0
#0)= 4R) =0

T he eigenfunctions and the positive eigenvalue

(1)

roots satisfying problem ( I ) can be derived easily

(h/x, Bm) = Sinﬁmx, Bm = %[

(m= 1,2 3, .. (16)

Integral transform''” is

;i(ﬁm, t) = J:sinﬁnxw;(x, t)dx (i= 1, 2)
(17)

. 16 .
Inversion formula''® is

Wil 1) = Z']%sin vewal B, 1) (i= 1, 2)

m= 1
(18)
Multiplying both sides of Eqns. (11) and ( 12)
by sinB.x, then integrating over the region R, the

we get
. Ow . w,
€| sinB.x dx = D | sinBux > dx +
0 at 0 ax

2
Dizj‘(:sinﬁnx aTu;zdx (i=1, 2)

The integral on the right-hand side of above e
quations can be evaluated by making use of Green s
theoremllgl , the application of the theorem yields

de_th =- BDuwi- BDow,-

(D Buw 1cosBux + DB 2cosBu ) F
(i=1, 2) (19)

The third term on the right-hand side of Eqn.
(19) is evaluated by boundary conditions of varia-
bles wi of Eqns. (14) and (15), and the boundary
conditions of eigenfunctions { x, B,)= sinB.x. Ob-
viously, the third term on the right-hand side of
Eqn. (19) is zero. So, it leads to

S%L =- 8D 11;1 - 8D 12;2 (20)
e%z =~ BDuwi- BDnw: (21)

The integral transform of the initial conditions
become

;1(0) = — Rciocos néi[,
;z(O) = — Rcaocos néf[ (22)

All the partial derivatives with respect to
space variables have been now removed from the
diffusion equation system (11) =(15) and the origi-
nal partial differential equations have been reduced
to ordinary differential equation system (20) ~
(22). In the process of integral transformation,
the boundary conditions have been employed,
therefore they have been incorporated into the re-
sultant solutions.

The analytical solutions of the ordinary equa-
tion system ( 20) and (21) subject to the initial

condition given as Eqns. (22) can be obtained easi-
ly by using the standard technique resolving ordi-
nary differential system, which can be found in any
text books on ordinary differential equations, so
the procedure of evaluation are not repeated here,
only resultant solutions are written as

wi(t) = - A L%%Qﬁe’l‘—
As %ew (23)
wa(t) = Aret + Aze? (24)
where
ri= - gé(D11+ Dx» -
J(Dn— D)2+ 4D0uDn) (25)
ro= — g‘i;(Dlm Dx»+
N(Dn— Di)*+ 4D1Da) (26)
A, = iz(O)(r28+(?ﬁz,lzzzr)lj-eil(O)Bﬁ,Dzn (27)
A, = wz(owma(Lri%;zzzz:l;ewl(ominzl (28)

For any problems of ternary system which
make sense in theory and practice, the main diffu-
sion coefficients D11 and D2 are larger than the
cross diffusion coefficients D12 and Da. It can be
observed from Eqns. (28) and (29) that both r1 and
r2 are less than zero. In fact, it is the necessary condr
tion for series (29) and (30) to be convergent.

Substitution of Eqns. (23) and (24) into Eqn.
(18) yields

)

wi(r, t) = Z'Iz{'sinﬁ“rujx(ﬁn, t) (29)

m= 1
[oe]

wa(r, 1) = Z%sinﬁm?z(ﬁn, ‘) (30)

m= 1
The analytical solutions of equation system
(3) and (4) can now be written as

ci(r, t) = w : L

_ly2.0 ~ p

= r & RS]H mrM}l( m, t) (31)
car, t) = WLt

;
= LY Zinfrwa(B, 0 (32

m= 1

The solutions obtained are derived under the
homogeneous boundary conditions of the first
kind. The rigorous solutions of Eqns. (3) and (4)
subject to the other boundary conditions are also
obtained by employed successively Hankel trans-
formation and the standard technique resolving or-
dinary differential system.

Because of the symmetry, the conditions at
the center of pellet are always the same, so, only
the boundary conditions on the outer boundary of
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pellet can be changed.

For the non-homogeneous boundary condition
of the first kind, the eigenvalue problem, eigen-
functions and eigenvalue roots, integral transform
and inversion formula still remain unchanged.
However, the ordinary differential equation system
after removing the partial differential with respect
to space variable by Hankel transformation is the
ordinary differential system with non-homogeneous
terms on the right side of the equation system

d — —
gl _ B.Dvwwi - BDnws -

de
_ RB.cosmT(Diicio+ Dizex) (33)
8%2 = - BDuwi - BDow:-

RBucosmT( Daicio+ Daaca) (34)
The standard technique resolving ordinary dif-
ferential equation system can be still utilized to ob-
tain the analytical solutions of the equation systems
(33) and (34).
The boundary conditions of the second kind at
outer boundary of pellet are

= Dll a_CL— D12 @2

or = (35)
I—D do_ p,, G = f (35)
* or 2orl e

The boundary conditions of ¢1 and ¢2 equivalent to

(35) and (35, ) can be derived easily as follows

oct = f1Dw»+ foDp

orl-x ™ DuDn- DnDau (36}
dcx _ _fuDo - foDy ’
Orl-rx”™ DuDxn- DuDxn (36)

Obviously, homogeneous boundary conditions
of second kind at the outer boundary of pellet have
been included in Eqns. (35), (35,) and (36),
(36,) as special case. The eigenvalue problem cor-
responding to Eqns. (11) and (12) and boundary
condition (36) and (36) is!'e 17

2
fijx_(f+ Be= 0

(1)
#0) = 0, ‘S—j: 0

Eigenfunctions and the positive eigenroots sat-
isfying eigenvalue problem ( II) are!'® "

Hx, B.) = sinBu (37)

b= H2mld (37)

Multiplying both sides of Eqns. (11) and ( 12)
by sinB.x, and repeating the same procedure, the
exact solutions of Eqns. (11) and (12) subject to
boundary conditions (36) and (36,) can be ob-
tained, from which the corresponding exact solu-
tions of Eqns. (3) and (4) can be derived.

3 CASE COMPUTATIONS AND DISCUSSION

Investigate the effects of cross diffusion on the

concentration of components through cases compu-
tation of the diffusion of ternary system H20-
NaClFKCl in a pellet, in which H»O is taken as sol-
vent, NaCl and KCI as solutes 1 and 2, respective
ly. The diffusion coefficients, D= 3. 40 x 10°°
em’/s, D= — 0.02% 10" % em®/s, Du= 0. 32 x
107 ° em®/s, D= 4.58x 10" ° em®/s, the porosity
of pellet, €= 0. 575, are taken out of Ref. [ 12].
The initial concentrations of NaCl and KCIl, cio=
0.25 mol/L, c2o= 0.25mol/L are also taken out of
Ref.[12]. Put the radius of pellet R= 1 em, and
the concentration of NaCl and KCIl in main fluid
out of pellet are always zero, i. e. cil-r= 0,
c2l =r= 0.

Fig. 1 shows the evolutions of concentration
profile of components 1 and 2 with time. Since the
main diffusion coefficients of components dominate
their diffusion, and Du < D, the diffusion of
component 1 is slower than that of component 2.
Because both components 1 and 2 move outwards
under specified initial and boundary conditions
here, the concentration of component 1 is higher
than that of component 2.

0.30

0.25

|v— Compenent 1, =1 000
e — Component 2, t=1 000s
*— Component 1, t=5000s
0.05 +— Component 2, t=5000s
¢ — Component 1, r=10000s
=— Component 2, t=10000s

0 0.2 0.4 0.6 0.8 1.0
r/cm

Fig. 1 Evolution of concentration profile of
components 1 and 2 with time

Fig. 2 shows the interaction of the diffusion
between components 1 and 2. To component 1,
the effect of cross diffusion on its concentration is
very small, since the cross diffusion coefficient is
three orders lower than the main diffusion coeffi
cient. As to component 2, the ratio of cross diffu-
sion coefficient to its main diffusion coefficient
D2/ D2 is T% . So the effects of cross diffusion are
observable. Cross diffusion coefficient Di2< 0 indi-
cates that the diffusion of component 1 is going to
be slowed down because of the presence of the con-
centration gradient of component 2, i. e. the mo-
tion of component 1 is going to be slower and its
concentration will be higher than that in absence of
component 2. Since Dai> 0, according to the same
reason, the motion of component 2 will be faster
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and its concentration will be lower than that in ab-
sence of component 1.

0.25
=1000s
0.20
i 0.15F
=) +— Component 1,
E 0.10- with cross diffusion
e 4— Component 2,
with cross diffusion
=— Component 1,
0.05F without cross diffusion
e — Component 2,
without cross diffusion
0 0.2 0.4 0.6 0.8 1.0

r/em

Fig. 2 Interaction of diffusion between
components 1 and 2

Fig. 3 shows the concentrations of components
1 and 2 schematically. Except the calculation is
conducted at t= 50000 s, the other parameters and
coefficients employed in the calculation of Fig. 3
are the same as those in Fig. 2. For component 1,
the concentration difference obtained by coupled a-
nalysis and non-coupled analysis, which is so small
to be distinguished in Fig. 2, can be observed in
Fig. 3 now. For component 2, the maximal relative
concentration difference between interdiffusion and
nom-coupled diffusion reaches almost 100%. The
comparison of Figs. 2 and 3 shows that the effect of
interdiffusion depends upon the diffusion time ob-
viously.

Fig. 4 shows the computation results schemat-
ically for the two different ternary systems. The
coefficients and parameters used in computation are
listed in Table 1, which are taken from Ref. [ 12].
The initial concentrations of components 1 and 2,
which are also taken from Ref.[12] are 0.3 mol/ L
and 0. 2 mol/L, respectively. The ratio of main
diffusion coefficients of component 1 in system B to
the component 1 in system A ( D71/ D1) is 0. 726,
where superscripts B and A denote H20-NaCl-HC1
system and H20-KCFHCI system, respectively.
The ratios of their cross diffusion coefficients to
main diffusion coefficients themselves are 5 0 % and

0.30

t=50000s + — Component 1,

without cross diffusion

0.25+~ 4 — Component 1,
with cross diffusion

~ 020
|
= s — Component 2,
2 0.15F with cross diffusion
\E * — Component 2,
< without cross diffusion

0.10

0.05

1 A 1 1

0 0.2 0.4 0.6 0.8 1.0
r/cm

Fig.3 Effect of long diffusion period on

coupled diffusion
0.35 L
0.30

s — Component 1 in

025 H,0-NaCl-HCl
= ¢ — Component | in
= 0.20f H,0-KCI-HCL
S
E oa1sf
Q

0.10\ a-— Component 2 in
H,0-KCI-HCI

0.05} *— Component 2 in
H,O-NaCl-HCl

1 i

1 —l
0 0.2 0.4 0.6 0.8 1.0
r/lcm

Fig. 4 Coupled diffusion in

two different ternary systems
(R=1ecm, cio= 0.3 mol/L, ¢0= 0.2mol/L, t= 10000 s)

55% , respectively. This means the effect of cross
diffusion on the diffusion of component 1 in H20-
KCFHCI system and that in H20-NaCFHCI sys-
tem are approximately equal. Therefore, the con-
centration difference of component 1 between H20-
KCFHCI system and H20-NaCFHCI system main-
ly induced by the difference of their main diffusion
coefficients. Since the main diffusion coefficient of
component 1 in HaO-KCFHCI system is greater
than that in H20-NaClF-HCI system, the motion of
component 1 in H20-KCFHCI system is faster and

Table 1 Parameters of two different ternary systems

System Component D D/ Du D D D2/ D2
1, KCl 1.79 0.99 0.55
A: H>0-KCFHCI
2, HCl -0.17 4.94 - 0.034
1, NaCl 1.30 0. 66 0.51
B: H20-NaCFHCI
2, HCl - 0.48 4.65 - 0.103
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its concentration is lower.

The ratio of the main diffusion coefficient of
component 2 in B to that in A (D%/D5) is 0. 94.
To component 2 in H20-KCFHCI system, the
ratio of cross diffusion coefficient to main diffusion
coefficients is — 3. 4%, while in H.O-NaCFHClI
system the same ratio is — 10. 3% . These facts
mean that the concentration concentration differ-
ence of component 2 HCl in different systems is in-
duced mainly by interdiffusion. The diffusion of
component 2 HCI in system H20-KCFHCI and in
system H20-NaCl-HCI system will be both slowed
down owing to the presence of the other compo-
nent, since the cross diffusion coefficients of com-
ponent 2 in different system are both negative. Be-
cause the cross diffusion coefficient of component 2
HCl in system H20-KCFHCI is less than that in
H>0-NaCl-HCIl system, according to the above
discussion, component 2 in H20-KCFHCI system
migrated more quickly than in H20-NaCFHCI sys-
tem, and the concentration is less than that in
H:0-NaCl-HCl system.

If no other component is in present, the con-
centration difference of component 2 in different
systems should not observed, since the main diffu-
sion coefficients of component 2 in these two sys-
tems are approximately equal. Therefore, the ob-
vious concentration difference of component 2 in
systems, which is shown schematically in Fig. 4,
should be attributed to the interaction of diffusion
between different components. This computation
result implicates once again that the interaction of
diffusion between the two components in ternary
system can t be neglected if the ratio of cross diffu-
sion coefficients to main diffusion coefficients are
close to 10% .

Fig. 5(a) shows the computation results for
component 1 schematically, the ratio of cross dif-
fusion coefficient to the main diffusion coefficient is
only 0. 59% there. Component 2 has hardly any
impact on the migration of component 1, unless
the cross diffusion coefficient is amplified. The im-
pact of cross diffusion on the migration of compo-
nent 2 is shown in Fig. 5(b). For component 2,
the ratio of cross diffusion coefficient to main diffu-
sion coefficient reaches 7%, the obvious impact of
component 1 on the motion of component 2 can be
observed. Because D21 and D2 are the same in
sign, the diffusion of component 2 is speeded up
due to the presence of component 1, the motion of
component 2 will be faster and its concentration
will be lower with the increase of D2, If the sign
of D2 is changed, the migration of component 2
will be slowed down due to the presence of compo-
nent 1 (see curve 4 in Fig. 5(b)).

The investigation on the three-components
fluids diffusion by applying the equivalent binary

0.25

T (a)

0.20

015

¢/(mol-L71)

0.10

=5000s

0.05

rlcm

0.25
(b)
0.20F=

0.15

0.10

¢/(mol+L 1)

0.05

r/cm

Fig. 5 Effects of cross diffusion on
components 1(a) and 2(b)
1 —Cross diffusion coefficient is base data;
2 —Cross diffusion coefficient is 10 times larger
than that of condition 1;
3 —Cross diffusion coefficient is 10 times smaller than
that of condition 1;

4 —Sign of cross diffusion coefficient is changed
(& 0.575, Dyi= 3.40%x 10" ® cm?/s,
Dip=0.02x%10"° em®*/s, Du= - 0.32x 10" ° em*/ s,
Dxn=4.58%10"°% ¢cm?/s, R= 1 cm,
c10=0.25 mol/L, 2= 0.25mol/L)

system method indicates that the components pro-

19, 20
[ . The above case

files are always monotonous
computation of interdiffusion also exhibits the mo-
notonous concentrations profiles of components 1
and 2. It seems that the difference between the in-
terdiffusion and the non-coupled diffusion is only in
magnitude and not in property. In order to further
discuss the possible difference between coupled dif-
fusion and non-coupled diffusion, we re calculate
the concentration profiles of components 1 and 2.
Except that the computation is conducted at t= 1
000 s, the other parameters and coefficients em-
ployed in the calculation in Fig. 6, are the same as
those in Fig. 4.

It can be known from Table 1 that the cross
diffusion coefficients D1> of components 1 in sys
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0.35 ponents.
(a) H,O-KCI-HCI The calculation results in Fig. 6 indicate that
0.30 — — i the concentration profiles obtained by the analysis
of interdiffussion can be very different from those
_ 0.25+ obtained by the equivalent binary system analysis.
7 0.20 P - This also indicates once more that the effect of in-
e terdiffussion on the concentration of components
% 0.15F =Lt depends upon the diffusion time strongly.
0.101 * — Component 1 4 CONCLUSIONS
= — Component 2
0.05F
1) On irreversible thermodynamics, the cou-
0 03 04 06 0.8 10 pled partial differential system describing three
Hlem component liquids diffusions within a porous pellet
is presented. The rigorous solutions of the prob-
35 lems derived by employed Hankel transform
(b) H,O-NaCI-HCl ems are y employ
0.30 b——er . . technique and the standard technique resolving or-
dinary differential system successively.
0.25F 2) The impact of coupled diffusion on the
& components migration and concentrations change
~ 0.20 i ., ..
- cant be neglected when the cross coefficients are
E 0.5+ =1000s close to 5%~ 7% of the main diffusion coefficient.
< 3) The effect of interdiffussion on the concen-
0.10F ::ggﬁggﬁﬁ:é tration of components depends upon the diffusion
0.05 - time strongly.
4) The concentration profiles obtained by the
0 53 02 i o' T analysis of interdiffussion can be very different

r/icm

Fig. 6 Effect of long diffusion period on

coupled diffusion of systems A(a) and B(b)
R= 1cm, cio= 0.3 mol/L, ¢2= 0.2 mol/L, t= 1000s

tem A and B are both positive, and the main diffu-
sion coefficients of components 1 in system A and
B are much lower than those of components 2 in
system A and B. The former means that compo-
nent 2 will promote component 1 to move more
quickly outward out of pellet than it does in ab-
sence of coupled diffusion effect, while the latter
means that component 2 will move more quickly
than component 1 will do, and the concentration of
components 2 will be much lower than that of com-
ponent 1. It can be observed from Fig. 6 that at the
place close to the surface of pellet, the motion of
component 2 steeps up suddenly, and their concen-
tration drop dramatically. It will inevitably lead to
the more quick motion of component 1. Because
the main diffusion coefficients of components 1 is
not enough large, they cant migrate in time out of
pellet, and pile up in the local region, therefore,
their concentrations increase in the local region.
Noting that the region where component 1 piles up
is roughly equal to the region where the concentra-
tion of component 2 drops suddenly. It is agree to
the effect of interdiffusion on the migration of com-

from those obtained by the equivalent binary sys-
tem analysis.

In this paper, the exact solution of the cou-
pled diffusion problems within a porous pellet with
boundary conditions of the third kind are not giv-
en, because the mass transfer within boundary lay-
er of a pellet is not discussed. That attributes
mainly to the three-component liquids diffusing in
the boundary layer of porous media is a big prob-
lem itself. So, for coupled diffusion problems in
porous media, it is a ambiguous problem itself
what is the correct boundary condition of the third

kind.
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