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[ Abstract] Data from the deformation on Split Hopkinson Bar were used for constructing an artificial neural network

model When putting the thermodynamic parameters of the metals into the trained network model, the corresponding

yielding stress can be predicted. The results show that the systematic error is small when the objective function is 0. 5, the

number of the nodes in the hidden layer is 6 and the learning rate is about 0. 1, and the accuracy of the rate error is less

than 3% .
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1 INTRODUCTION

Shock-prestrained copper is often used in experi-

=31 for research of the properties of deforma

ments
tion and the formation of adiabatic shear bonds of ma-
terials at high strain rate owing to its high ductility.
The shock-prestrain process is used to enhance the
calorific capacity of unit plastic deformation, accord-
ingly, to increase the flow stress and the sensitivity to
strain-rate.

Copper had been previously shock-prestrained at
a pressure of 50GPa, which can increase the yield
stress. A few material scientists have studied the con-
stitutive relations of the shock-prestrained oxygen

(23] Howev-

free high conductivity (OFHC) copper
er, the constitutive relations of this material, espe
cially under the condition of high strain-rate ( €), are
very complex, such as complex dislocation interac
tions with the formation of sub-grains, inhomo-
geneities and other peculiarities ensued.

Several models'*™ ® have been proposed for these
constitutive relations. However, these models were
based on dislocations overcoming obstacles by thermal
activation. In fact, the deformation mechanism of
these materials at high strain-rate is very complex.

The relations among the parameters as flow-stress

( 9), strain-rate ( €, strain( €& and experiment tem-
perature ( T') are nonlinear. Therefore, we may use
artificial neural network, which is very useful for ex-
pressing nonlinear relations, to establish the constitu-
tive relations of OFHC copper. These artificial neural
network models can provide relatively accurate pa
rameters prediction and these predictions can be used
in the later researches.
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2 ARTIFICIAL NEURAL NETWORK MODEL

After a shock-prestrain on copper (OFHC) at a

pressure of S0GPa'*!

, samples were gotten to be test-
ed on Hopkinson Bar testing apparatus' . The data
obtained under the condition of different tempera
ture, different strain and different straimrate were
used for establishing the artificial neural network

model.

2.1 Back propagation network model

Multrlayer feedforword neural network is also
called back propagation neural network. In this pa-
per, we use the standard feedforword neural net-
work, which is formed by three layers (input, out-
put, hidden) of neurons, as shown in Fig. 1. In this
€ &

T, and the output layer includes just one node ( 0),

model, the input layer includes three nodes
while the number of the nodes in the hidden layer de-

pends on the training process. The characteristics of
the artificial neural network are: no feedback con-
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Fig. 1 Model of threelayer feedforward

neural network
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junction between different layers; no conjunction be-
tween neurons within a layer; there are connections
just between adjacent neurons. An input signal will
be propagated to the hidden nodes, then the signals
from the hidden nodes to the output nodes. At last
the results will be gotten. We fetch Sigmoid function
as the incentive function of the neurons in the hidden
layer and linear function as the incentive function of
the neuron in the output layer. The output value of

the j th neuron from the p th training sample is'

Oy = f(Net))

1
1
L+ expl- ( Dpiaj+ §)] .
where Net; is the output of the jth neuron in the
hidden layer,  is the threshold of the unit in the
hidden layer, w ; is the conjunction weight among the

output layer and the hidden layer. By adjusting the
conjunction weight between different layers and the
threshold between different neurons, modeling of the
nonlinear object can be achieved. As to every output
data column, if the initial weight of the network has
been set arbitrarily, the error ( E,) between the out-
put value of the network and expectation value exists.

Here, the objective function for training is as'”

E = szp
i M N
) ZZ Opj = ¥pi)

p=1j=1
E(wg, wi, ¢, O) (2)
yp; 1s the expectation output of the jth out-

w here
put unit in the pth learning sample, 0,; is the true
output of corresponding network, M is the number of
the training samples, N is the number of output
nodes.

The maximum gradient descent algorithm is used
to make the weight vary in the direction of antigradi
ent of the error function, the weight modification af-
ter £ times of iteration is as

oy =— nLBEE=LL L ha k- 1) (3)

Ok (k- 1)
Ay(k)= @ (k) - @ (k= 1); ME(0, 1)
is the learning rate, k is the number of iterations and
a€(0, 1) is the coefficient of the inertia term. Inertia

where

term is used to bring down the error caused by gradi
ent descent as much as possible. When the objective
function satisfies the given convergence criterion, the
network becomes stable and the training is complet-

ed.

2.2 Data preprocessing

If the data have big difference to each other, the
effect on radial functions of the smaller ones will be
annihilated, which will increase the difficulties to ad-
just the conjunction weight between the input layer
and the hidden layer. Finally the accuracy and the
rate of convergence will be influenced. To overcome
these shortcomings, the initial data can be normalized
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as
A— A
Ai= 0.1+ 0.8 x (7—— ) (4)
A max — A min
where A is the input parameter of network.

3 RESULTS AND DISCUSSION

Here the program of MATLAB ver. 5. 2 is used
according to the process of the BP network. The ini-
tial weight is gotten at random between — 0.5 to 0. 5
and the network comes into convergence after 20 000
times of iteration. Fig. 2 shows the comparison of the
predicted values from the trained network model with
the experimental value of the yielding stress under the
condition of different thermodynamics state. The cal-
culation by the model shows that the choices of the
parameters of the network model have important ef-
fects on the systematic error.
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Fig. 2 Predicted curve by network model

The training of the network shows that the sys-
tematic error is small when the objective function is
0.5, the number of the nodes in the hidden layer is 6
and the learning rate is 0. 1. Table 1 shows the com-
parison of the modelpredicted value with the experi
mental data of the yielding stress of the shock-pre-
strained copper. It is obvious that the prediction is
accurate enough with the errorrate less than 3%.
Fig. 3 shows the comparison of the modelpredicted
stress~strain relations with the experimental curve.
The yielding stress curve is relatively flat for the ma
terial having deformed in the form of adiabatic shear,
especially at high strain rate. From the above analy-
sis, we can know that our network model is accurate.

4 CONCLUSIONS

In most cases, the experimental data are not so
comprehensive due to the limitation of fund, appara-
tus and so on. If these limited data are put into the
artificial neural network model which can learn from
the experimental data and generalize the regularity,
then the constitutive relations knowledge base of the
corresponding metals are formed. Only if we put the
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Table 1 Comparison of predicted yielding stress ( 0) with experimental data
0O- O
Sample No.  T/K € e s ! 0,/ MPa 0,/ MPa (0.~ 0,)/MPa =5 /%
1 298 0.3 2 000 481 488.99 - 7.99 1. 66
2 298 0.4 2 000 487 487.70 - 0.7 0.14
3 298 0.5 2 000 490. 5 486. 41 4.09 0.8
4 573 0.1 3500 410 413.24 -3.24 0.79
5 77 0.3 3500 667 658. 37 8.63 1.29
6 77 0.4 3500 678 677.21 0.79 0.12
7 573 0.5 3500 417.6 413.24 4.36 1.04
8 298 0.2 0.1 480. 5 476. 47 4.03 0. 84
9 298 0.23 0.1 482.3 476. 06 6.24 1.29
10 298 0. 06 8 000 512 521. 88 - 9.88 1.93
11 298 0.11 8 000 523 523.63 - 0.63 0.12
12 298 0.14 8 000 528 525:25 2+ 15 0.52
0. —Experiment data; 0, —Prediction data
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Fig. 3 Comparison of model fitting with experimental data of stressstrain relations
(a) —€= 2000s™ ', T=298K;(b) —e= 8000s™ ', T= 298K

corresponding thermodynamic state parameters of the

metals into the trained network model, the corre

ponding yielding stress can be predicted.
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