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[ Abstract] On the basis of the data obtained on Gleeble 1500 T hermal Simulator, the predicting models for the relation
between stable flow stress during high temperature plastic deformation and deformation strain, strain rate and temperature

for 1420 AFLi alloy have been developed with BP artificial neural netw orks method. The results show that the model on

basis of BPNN is practical and it reflects the actual feature of the deforming process. It states that the difference between

the actual value and the output of the model is in order of 5% .
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1 INTRODUCTION

Generally alloy materials will present stable flow
feature at high temperature plastic deformation,
namely, under certain temperatures and strain rates
true stresses ( 0) will not apparently change with the
continuous increasing of strains ( € after true strains
are beyond some values. The stable flow stresses
models of alloy materials plastic deformation at high
temperature are often developed by statistic method
using gained experimental data. But since there are a
lot of factors which have effects on flow stresses, the
mathematical models which are developed by above
methods are sometimes far away from complicated
true deformations. The precision of models is restrict-
ed by deformation conditions, and the process of
modelling is very troublesome and the working quan-
tity is great. And that system modelling based on
neural networks can make up this essential short-
agel '™ 7).
pothesis on studying objects when modeling, the

Because the latter needn’ t make any hy-

model can approach true deformation process with its

81 Here by using the true

good mapping capacity[6~
measuring data gained at the compression test of 1420
alloy under high temperatures, a model of stable flow
stresses for AFLi alloys under high temperature plas-
tic deformation has been developed according to the

theory of BP algorithm.
2 EXPERIMENTAL

The experimental material was 1420 AFLi alloy
whose chemical compositions are given in Table 1.

This alloy was smelted and founded by IM. It
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Table 1 Chemical compositions of
1420 AFLi alloy

( mass fraction, %)

Cu Mg Si Li Fe
0. 05 5.44 0.013 2.15 0.02
Zr Na Ti H/10"° Al
0.12  0.0004 0.05 0.6 Bal.

was melted and fined under the protection of flux,
and being cast to circle ingots with diameter of 405
mm and length of 1200 mm, and with water-cooling
moulds under argon atmosphere. After the ingots be-
ing homogenized for 12h at 455 'C, from them small
columnar samples with diameter of 8 mm and length
of 12 mm were machined whose ends were machined
to have simple grooves in order to deposit lubricant
(75% lead and 25% machine oil, mass fraction) in
order to reduce the friction between sample and
press. The compression tests of equivalent tempera-
tures and constant strain rates were performed on
Gleeble 1500 Thermal Simulator and the samples
were water quenched at once after deforming. Com-
puter fully controlled the deformation process and au-
tomatically gathered the related data, and at the same
time protracting the true stress true strain curves of
the experimental materials. The test temperatures
used for 1420 AFLi alloy test were 300, 350, 400,
450 and 500 C and the strain rates used were 0. 001,
0.01, 0.1, 1.0, 10.0 and 30.0s™ ! for each temper-
ature, and the deformation strains were from 0 to 0. 7
for each test.

The experimental scheme of compression tests
for 1420 AFLi alloy under equivalent temperatures
and constant strain rates is listed in Table 2, where
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Table 2 Experimental deformation conditions

5 s !
t/ C
0.001 0.01 0.1 1.0 10.0 30.0

300 C T C T C T
350 T C T C T C
400 C T C T C T
450 T C T C T C
500 C T C T C T

T denotes that the data which are gained under some
deformations are used for train sets, while C denotes
check sets.

3 FUNDAMENTALS

3.1 BP algorithm of neural networks

In case the networks frame of BP algorithm has
three layers. There are n input variables in input lay-
er, [ hidden layers and m output variables in output
layer. The nodes for input layer, hidden layers and
output layer are expressed by subscripts i, h, j sepa
rately, while the weight from node i of input layer to
node h of hidden layer is expressed by w and the
weight from node h of hidden layer to node j of out-
put layer is expressed by w;.

For input datum x, suppose that its objective
output is d, while actual output is y. In order to
train networks, the mode pairs of train swatch are
made up of [ x*, y*], and the superscript k is the se-
rial number for a pair of train. And the front-propa
gation and back-propagation for every pair of swatch
mode are dealt as follows.

3.1.1 Feedforward front-propagation algorithm

When inputting datum x (k) of the number £,
the total inputs of node A in the hidden layer is

Sifk) = Zi(k) ©w (1)

Using Sigmoid activation function to deal with
the relationship between inputs and outputs, then the
output of the node h in hidden layer is

-1
(k) = S (2)
Accordingly, the output of the nodej in the out-
put layer is
1
(k)= S (3
If taking the total square error of all output
nodes for k£ inputs as training target of networks,
then there will be

Jw)= 3 234k - nh* 4

Since the transferring function ( Sigmoid func
tion) is continuous differentiable, so J( w ) is also ob-
viously the continuous differentiable function to each
weights.

3.1.2 Error back-propagation

Using gradient regulation, each w is differential
to J, and it can get the gradient minimized J as the
reversal of adjusting weights.

1) Adjust the weights wj;j from hidden layer to
output layer, then
el

Awh- = aWhj
= N2H(k) *ya(k) (5)
§(k) = [di(k)= yi(k)] *f (Si(k))  (6)
2) Adjust the weights w); from input layer to
hidden layer, then

_ qlllwl

W in

= N 2B(k) * xi(k) (7)
G(k)= Dy &(k) = f(Si(k) (8

It usually adjusts the weights using current er-

Aw g, =

rors in actual application. In this way the summing
item about £ in Eqn.(5) and Eqn.(7) can be ig-
nored. At one time in order to accelerate the training
speed of network and improve its astringency, an im-
pulsive item is appended during the weights adjust-
ing. So the equations for weights adjusting are as fol-
lows.

For output layer:

Aoy (k+ 1) = NGyn(k)+ adwy(k) (9)

For input layer:

Aogp(k+ 1) = Nox;(k)+ adwa(k) (10)
where ais momentum factor or inertia factor; 1l is

the learning rate; commonly ais 0. 60~ 0.95 and T
is 0. 45~ 0. 90.

3.2 Software realization of BP algorithm

The BP algorithm is actually designed to mini
mize the error function. By training the multrlearn-
ing sets again and again and using iterative gradient
algorithm, it makes the weights change following the
negative gradient direction of error function and con-
verge to minimum. According to the principles of BP
algorithm, a relevant realizable program based on
MATLAB language is developed on computer.

4 STABLE FLOW STRESSES MODELS OF 1420
AFLi ALLOY

4.1 Optimum design of network model

In the study, the neural network model of flow
stresses has an input layer, a hidden layer and an out-
put layer. According to the feature of high tempera-
ture compression deformation of alloys, the stable
flow stresses are function of deformation strain, tem-
perature and strain rate. So the network model, pre-
sented in Fig. 1, has three input variables in the input
layer which are deformation strain € temperature
T and strain rate € while there is only one output varr
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Hidden layer Qutput layer

Input layer

Fig. 1 Frame of neural network

able that is stable flow stress O, and the neurons in
the hidden layer take fivel” .

4.2 Pretreatment of data

The data of deformation strains, temperatures
and strain rates of 1420 AFLi alloy at high tempera-
ture compression deformation were gathered. And in
view of modeling training to actual deformation pro-
cess there are generally various disturbing factors to
the gained actual measuring data, so the gained data
are divided into training sets and checking sets in or-
der to let the developed model has extensive capacity.

At the same time, according to the demand of
input-output range of BP network, the desired output
values and the parameters in the input layer are nor
malized by Eqn. (11)1',
ables to gain values between 0. 1 and 0. 9 in case that

It makes each eigenvari

during network modelling iterative computing the nu-
merical values excessively centralize on some neurons
and weights which will recede the computing accura

cy.
_ 0.8(S~ Supy)

5, = S _s. ¥ 0.1 (11)

where S is input parameter as & T, € and output

value as O for network; Siin, Sma are maximum and
minimum of relevant datum S.

4.3 Improvement of BP algorithm

Traditional BP algorithm has some disadvan-
tages, such as long learning time and slow astringency
of network. In order to reduce the iterative times in
flat sections, accelerate astringency, avoid vibration
and rapidly exit insensitive sections when local mini-
mum during computing, some improvements are
made based on traditional BP algorithm. Adopting
batch manner to modify the conjunction weights of
network model, namely, the total errors of system
are computed after all of the learned sets are input.
The weights are modified if the errors of system dis-
satisfy the demand in order to ensure the errors of

system always changing toward the decreasing direc
tion during learning, and pick up the convergent
speed of system. Moreover, when computing the
weights within (- 1,+ 1) are adopted to be initial-
ization range of weights.

4.4 Results and analyses

After the pretreatment of data being normalized,
they are computed using BP algorithm programmed
based on MATLAB language by the authors, and ac
tual measured data and results predicted by model are
shown in Table 3 and Table 4. Fig. 2 compares the
values predicted by ANN and the true values, while
Fig. 3 shows the relationship between values predicted
by ANN and the actual values of stable flow stresses

Table 3 Actual values of stable flow
stresses under various compression deformation
conditions ( & 0. 5)

e 0/ MPa
os 300°C 350°C 400°C 450 C 500 C
0.001  69.91 38.79 9.08 10.53  6.23
0.01  116.84 80.44 42.14 18.20 18.18
0.1  184.83 105.82 81.88 55.55 32.08
1.0 192.97 147.98 119.71 88.59  57.46
10.0  207.34 183.87 141.26 106.78 73.74
30.0  260.97 215.96 163.76 144.13 108.70

Table 4 Prediction values of stable flow
stresses under various compression deformation
conditions ( & 0. 5)

- 0/ MPa
i 300 °C 350°C 400 C 450 C 500 C
0.001  71.35 38.70 9.03 10.01  5.99
0.01 114.98 79.82 41.52 19.06 18.71
0.1 184.47 105.73 82.78 53.90 31.94
1.0 195.39 147.05 118.77 86.74 59.59
10.0  205.87 182.15 142.13 108.62 71.55
30.0  258.88 217.24 162.07 142.81 107.36
300
I €=0.5
250 =Prediction values
A al
2000 Actual values
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Fig.2 Comparison between prediction values ( )
and actual values ( 9,) of Neural Networks
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and deformation temperatures T and strain rates €.

The above results indicate that errors are within
5% when using developed network model to predict
stable flow stresses which can absolutely satisfy the
demands of computing in engineering and of actual
deformation, while the calculational errors of tradi
tional statistical models are up to 10% .

S CONCLUSIONS

In the present study, the back-propagation Neu-
ral Network is used to develop the model of stable
flow stresses for 1420 AFLi alloy at high temperature
compression deformation. Results of the investigation
show that the method is effective and feasible. The
neural network based model clearly indicates that it is
able to learn of training data and accurately predict
the unseen outputs.
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