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Eigen elastic mechanics and its variation principle
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[ Abstract] The fundamental equations and the corresponding boundary condition of elastic mechanics under mechanical
representation are given by using the conception of eigen space and elastic variation principle. It is proved theoretically that
the solution of anisotropic elastic mechanics consists of modal ones, which are obtained respectively from the modal equa-
tion of the different subspaces. A simple application is also given.
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1 INTRODUCTION

The conception of eigen elastic mechanics benefits from the standard space theory!'™*. A series of stud-
ies’>” 7 made by author recently, have established the eigen form of elastic mechanics under mechanical repre-
sentation and its operationalized principle, but the corresponding boundary condition and the solving method
have not been discussed in more detail yet. It is well known that a correct boundary equation for elastic body can
be obtained only by means of the variation principle. But the classical variation principle of elastic mechanics is a
energy expression of the equilibrium equation and the boundary condition of elastic body under geometrical repre-
sentation. If we want to study the variation principle of elastic body under mechanical representation, it is neces-
sary to convert the mechanical quantities, such as stress or strain, from the geometrical space to the mechanical
one. This is just the work to be made in this paper. Furthermore, a definite, explicit and complete scheme to

solve the anisotropic elastic mechanics is also given.
2 CONCEPTION OF REPRESENTATION CONVERSION

. . . . . 8~ 10 .
The relationship of the representation conversion of stress and strain vectors! I are respectively
* *

o= oo, Eo Pre (1)
and it also can be rewritten as follows.

6= D0 ®, 6= D0 % o= DG4

sz‘ = Zoi (Pi4a ’Ex = ZOL' (PiSa -";m = Zoi (Pi6

where % is a value of jth element in the ith modal vector.
3 EIGEN ELASTIC VARIATION PRINCIPLE

Considering a elastic body subjected to a constant loading under equilibrium, the displacement is known in
S, part of the boundary and the surface force is known in Sopart of the boundary. Supposing that the body force

is denoted as f,, f,, f:, the surface force X, Y,, Z,, and the fictitious one of the displacement u, v, w at

any point of elastic body, 6u, 6v, Sw . According to the fictitious displacement principle,

57 = ﬂ foSu+ f80+ f.8w)dydydz + fﬁ(xsam Y80 + Z.6w)dS (3)

Because the displacement is known in S, part of the boundary, the fictitious displacement hold u = 6v =
Sw = 0in S, , so Eqn. (3) becomes

5 V- fj“ffxu+ fyv+ faw)dydydz - fﬁ(}(w Yoo+ Zaw)dS] = 0 (4)
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This is the minimal potential principle. It is equal to three equilibrium equations and three boundary condi

tions of static force. Under mechanical representation, the strain energy of elastic body is defined as

8V = ﬂ Wdx dy dz (5)

Using the representation conversion relationship, Eqn. (1) and the orthogonality of the modal matrix,

@« ®= I, the variation of strain energy of elastic body in unit volume becomes

W= o"e6e= 0TI BSE = 0" "5 = D0 6€ (6)
From the geometrical relationship of elastic body,
€= {au/ax, Ov/0y, Ow/0z, Ow/0y+ Ov/0z, Ou/0z + Ow/0x, Ou/Oy + 51)/ax}T (7)

Using Eqns. (5) and (6), the variation of strain energy of elastic body becomes

ov = [[f Zei ogardya = [[f ot ( Dgog)acdya: = B [[f o 4o87anaras

(8)
Using Eqn. (7), Eqn. (8) becomes

S5V = Zfﬁo[ T L5, %5%61” ‘635%6w+ ‘%4(5%6w+ 5%5@)+ ‘Pis(é%&u+ 5%6w)+

0
i6(ay6u+ B Sv)]
Integrating Eqn. (9) separately,

fffzo' %1) O 6udxdydz = ff ZO @) 16uds - ffja( 5udxdydz
J:[f ZOT %) 'aaﬁvdxdydz = ff ( Zof. ®,) mSydS - J‘fﬁ%&)dxdydz,

I[[fZO- ?3) a Swdxdydz = ff Zo ©3) n 6w dS - J‘J‘Ja( Sdedydz
J:[f ZO' 14) dx dydz = ff ( ZOT Pa)(mbw + nbv)dS -

J‘J‘ ( 0 ‘842 a( z‘éjf ‘3426

dx dydz (9)

0
61,(] + az 61]

o| dxdydz,| (10)

[[f = as)| Lous Lou

dedydz = ﬂ Zoi ©s)(nbu+ 18w)dS -

J‘J‘J‘a( ZO &l+ a(z‘é#fjw dxdydz,
J:[f ZOT (Pi6)| 5%5u+ 5%511 dx dydz = ff ( ZOL- ®6) (180 + mbu)dS -
J‘J‘J‘a( ZO az@#fﬁu dx dydz

where [, m, n are the direction cosine of normal N in So part of the boundary.
Substituting Eqn. ( 10) into Eqn. (9),

SV = ﬂ;{[( DG @)L+ (D0 B m+ (D40 Ps)n] &t [( D40 Be)l+ ( D40 P)m +

(220 9a)n]bu+ [( D220 Gs)l+ ( 250 %u)m+ ( D20 €3)n]bw)dS -
m Gl Zo G, A 2.9 %) A 2.0 %) il Zo? %) , A 2.9 %)
dy 0z

| 6u + [ Ox Oy
A0 O]

Substituting Eqn. ( 11) into the minimal potential principle, Eqn. (4), and considering that the fictitious
displacements Su, &v, OSw have no any connection, and are totally arbitrary within elastic body and in the
boundary where the external force is definite, we can get three equilibrium equations of elastic body and three
boundary conditions of static force in the surface where external force is given under mechanical representation,
when letting the coefficients of 6u, 6v and 6w under integration be zero.
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(0 s 2 N0 %+ (X %+ fa= 0

(X0 G+ ol Do %)+ 3 L0l %k £y = 0 (12)
(X0 Gs)+ o X G+ 5 20 %)+ fe= 0

and
(D50 @)1+ (2,0 B)m+ ( 240 ®s)n= X,
(D50 @)l+ (20 ®)m+ (2,0 €un= Y, (13)

(D30 @)1+ (2,0 Cum+ ( D240 ®3)n= Z,

T aking note of Eqn. (2), Eqns. (12) ~ (13) can be obtained directly from the equilibrium equations and the
boundary conditions of static force under geometrical representation, provided we make the representation con-
version of Eqn. (2) on stress. But one of virtue of the equilibrium equations under mechanical representation is
that the stress which holds the equilibrium equations certainly holds the compatibility equation.

4 FUNDAMENTAL EQUATIONS OF EIGEN ELASTIC MECHANICS

Although the equilibrium Eqn. (12) deduced above are expressed with the modal stress, they do not break
away from the geometrical form, and is not easy to calculation. Considering the representation conversion Eqn.

(2), the equilibrium Eqgn. (12) can be still written as the form of tensor.

Ok i+ Orki= 0 (14)
Due to symmetry on (z,j) in two sides, it can be written as
AO= 0 (15)
A is a symmetrical differential operator matrix of the second order, and called stress differential operator matrix,
A 0 0 0 JASH! A3
0 Ny O Az 0 A3
fm 0 0 Az3 JA%Y) A3 0 (16)
0 M3 A (Mo+ Ns3) Moy A3
N 0 Ay Moy ( A+ M33) A2
N1 M1 O 31 A2 ( A+ No)
where A= &= 0%/0x,0x;

The equilibrium Eqn. (15) can be written as the operationalized form under mechanical representation

[5~7]

NG =0 = 1,2, . 6 (17)
They are six independent scalar equations, in which the stress operator is A; = @] A® . The compatibility
equation of elastic body can also be written as' >~ 7.
Vi€ =0 i= 1,2 .6 (18)
V: is the strain operator, Vi = 9 ve [ V]isalsoa symmetrical differential operator matrix of the second
order.
0 V33 V= Vo 0 0
V33 0 Vi 0 - Vi 0
Vo Vit 0 0 0 - Vi
e 0 - Vw2 Vi/2 V2 (19)
0 - Vi3 0 Vi2/?2 - V/2 Va3/2
0 0 - Vi Vi3/2 Va/2 - Vs/2

where V; = V;; = 0°/0x;0x;.
There exist the following Hooke” s form between the stress operator and the strain operator.
Vi = M i= 1,2 - 6 (20)
It is seen from Eqns. (17), (18) and (20) that the equilibrium equation and the compatibility equation of
elastic body under mechanical representation are indistinguishable.

S DEFINITE EQUATIONS OF EIGEN ELASTIC MECHANICS

. . . . 9
Define the stress function under mechanical representation as!”!
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Of = vf lbi l: 17 27 ] 6 (21)
Substituting Eqn. (21) into Eqn. (17) and Eqn. (13) respectively, we get the definite equations under me-
chanical representation for anisotropic elastic mechanics.

A Vidi=0 i= 1,2 - 6

ZVT b(Pl+ Cem+ Psn)= X,
Z vi b( Pl + Pom+ Pun)= Y,
Z vi b(Psl+ Cum+ ®3n) = Z

It is seen from Eqn. (22) that the solution of elastic mechanics under mechanical representation is, in fact,
the results of the modal superimposition.

O= 0] ®+ 0, ®+ ...+ Of P = ZO(” (23)

where oY is an approximate value of the first order, and o2 .., 09 are the revised value of the second to

(22)

the 6th order respectively. The solution will be accurate after it is revised six time. In engineering calculation,
considering only some former modal solutions, the needing precision can be satisfied.

6 APPLICATION

It does not loss generality to take the plane problem of isotropic elastic body as an example and give the solv-
ing process of eigen elastic mechanics. More important thing is that the result of new theory should go back to
the classical one in the particular case.

There are two subspaces in isotropic elastic body. So, the structure of the mechanical space is

W= Wi'(®) @ W ( %, ¢ (24)
where @ = J2[1,1,01"/2, @ = J2[1, - 1,01"/2, ¢ = [0,0,1]".

The strain operator of the plane problem of elastic mechanics is

Vi o= J_2( Vit Vn)/2, Vs = J( Vii- Va)/2+ Vi (25)
Substituting Eqn. (25) into Eqn. (22), and using Eqn. (20),
(V11+ V22)2¢1: 0, [( Vii— V22)2+ 4V%2] ‘bz: 0 (26)

Open up Eqn. (26), and using the property of differentiation, Vi Va2 = Vi, Eqn. (26) degrades. It is
just the double harmonic equation familiarized in elastic mechanics. Thus, the eigen elastic mechanics go back to
the classical elastic mechanics for the plane problem of isotropic elastic body

vVEvie= 0 (27)
where ¢ is just Airy function, and we have
0, = 0°¥/0y% 0= O*¥/0x? T,=- 0¥ 0x0y (28)
For example, let ¥= Ty , we have 0, = O, + g = 0, 0 = T.,, = — T They are just the pure shear
case.
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