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[ Abstract] Based on the assumption that the slope bodies are rigid, the dynamic model of the landsiding ( forward mod

el) was put forward. According to the dynamic model, the system equations of Kalman filter were constituted. The me

chanical status of a slope was hence combined with the monitoring data by Kalman filter. The model uncertainties or mod-

el errors could also be considered through some fictitious observation equations. Different from existed methods, the pre

sented method can make use for not only the statistic information contained in the data but also the information provided

by the mechanical and geological aspect of slopes. At last a numerical example was given out to show the feasibility of the

method.
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1 INTRODUCTION

Landslide is a main cause of the natural disaster.
In order to prevent the disaster caused by landslide, a
lot of slope monitoring were carried out, hence a lot
of methods have been proposed to analyze the data
collected through slope monitoring!'. But most of
these methods were based on statistics, for example,
the regression-type methods, the time seriestype
methods which were based on the theory of time se-
ries and the grey theory-type methods which were de-
veloped in the recent decades'>™ *'. Only the statistic
information is used in these methods. The mechanical
and geological aspect of slopes is not taken into con-
sideration. No matter how the mechanical status and
the geological conditions are, the same models will be
used in these methods. These methods are effective at
times. But misleading results can also be obtained due
to the ignorance of the actual mechanical properties.

Another kind of methods is that of determinant
model ">, This kind of methods were based on the
mechanics, but they work mainly in spatial domain.
It is very difficult for them to be used in dynamic pro-
cess (in time domain) .

This paper describes a method that can make use
of both the information provided by monitoring data
as the statistic methods do and the information pro-
vided by the mechanical status of the slope body. The
monitoring data and the mechanical status of the slope
are combined with Kalman filter.

Based on the assumption that the slope bodies are
rigid and the bodies keep touch with each other, the

paper at first establishes the dynamic model of the
landsliding ( forward model). According to the dy-
namic model, the system equations of Kalman filter
are constituted. The mechanical status of a slope is
hence combined with the monitoring data by Kalman
filter. The model uncertainties or model errors can al-
so be considered through some fictitious observation
equations. The concept is demonstrated through a
simple slope sliding example.

2 DYNAMIC MODEL OF SLOPE

The slopes typically vary in the plane, wedge,

curve or toppling modes'®.

If only the plane problem
is concerned with, the plane, wedge and curve modes
can be described as a block system (Fig. 1)!"!, that
is, the fallen portion of a slope can usually be divided
into a number of blocks.

Without loss of generality, only the system of

blocks like that showed in Fig. 1 will be discussed in

Fig. 1 Block failure system
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this paper. To simplify the problem, the blocks are
considered as rigid bodies in the study.

If the geometry and material properties (e. g.,
coefficient of friction and unit weight) of a block sys
tem are known, the motion of the system can be de-
rived.

From the Newton’ s second law of motion, the
motion of any block can be described by (Fig. 2):

# s

2 I
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Fig.2 Geometry and forces associated

with rigid block

miaiy = N+ R+ Pi,(i— yx t Pi,(£+1)x+
Fii-te+ Ti o Us
mia;; = Ni+ Ri+ Pi,(i~1)z+ Pi,(£+1)z+
Ti,(i‘l)z"" Ti,(i+1)z_ m;g
(D

where a,, a, are accelerations of the mass centre of

the ith sliding block, that is

Pux; &z,
Az = ?, ai; = a_t2L (2)

N is the normal force exerted on the surface of the
block by the stable part of the slope; R is the resis-
tant force as a result of the friction; N., N., R.,
R are the components of N and R in x and z direc
tions respectively; m is the mass of the block; g is
the acceleration due to gravity; x; and z; are the dis-
placements of the block; P and T are the correspond-
ing forces from the adjacent blocks; and ¢ is the
time. Eqn. (1) can also be written as

Ma,= A Y+ F; (3)
where
A=
sin@; — cosqQ; sin Bi, i1 — sin BL-, -1 - (:OSBL" -1 - (:OSBL-, i1
cosq; sin Q; - cos Bl-_, i1 cos Bi, i1 — sin Bi, i1 sin Bi, il

Yi= (NiRiPii1iPiiv1i Tii1,iTiiv1)"

m; O
M;= 0 m;
a,= (axi llzi)T
Fi= (0- mig)" (4)

For the entire system of blocks, a general equa
tion of Eqn. (3) can be formed:
Ma= A, Y+ G (3)

where

Y= (N, Ny AN;A, Ry, ARy, A Py,
APi, i+ 1s AP11,~ 1, n»s Tl, 25 Aa Ti, i+ 1y Aa
Totn)'
a= (a1, a:1, My, @z, A, n, 0z, 0)
G= (0, mig, A0, mig, A O, mg)"
M and A are formed according to M; and Ai; re

T

spectively.
Eqgn. (5) describes the motion of a system of
rigid body blocks. Obviously, if only one block is

sind — cos OI
cos a sin
(6)

Under the assumption of rigidity of the blocks

considered, then

| _|
Y=| | G-

0
g

2

and the constraints of the geometry, any block must
move along the surface of discontinuities. This means
that for any block, there must exist

ayitan G+ az;; = 0 (7)

If there are n blocks in the system, there must
be n such equations.

Besides, the displacements, velocities and accel
erations of two adjacent blocks are assumed the same
in directions normal to the surfaces of discontinuity.
Therefore, for acceleration, there exists

@SN QG 41— @z COSQy 41 =

Qy(is 1)SINOG 14 1= @z(ir1)COST iy | (8)

If there are n blocks in the system, there must
exist n— 1 such equations. As for the block system,
Eqgns. (7) and (8) can be combined into

Ara= 0 (9)
where A» can be formed according to Eqns. (7) and
(8).

The friction forces depend on the normal forces,
ie.,

Ri = kNi + ¢

TL' = kPl + ¢ (10)
where £k is the coefficient of friction; and ¢ is the

force due to cohesion. For a system of n blocks,
there must exist 2n — 1 such equations. The equa
tions can be expressed as
A3 Y= C (11)
Finally, the equations in (5), (9) and (11) can
be expressed as

AX= L (12)

w here
- M A1 -G
A=| A 0|, L= 0], X= ‘;,]
0 Aj C

There are 6n — 2 unknowns and 6n - 2 equa
tions in Eqn. (12). Therefore the equations have u-
nique solutions. Muliplying Eqn. (12) by A", one
gets

ATAX=A"L (13)
and

X=(A"A)"'A"L (14)
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Eqn. (14) can be easy to solve by many existed
softw ares for surveying adjustment. After the acceler-
ations are found from the above, one can derive the
motion velocity and displacement of the slope using

oX;
Vi = EL = J.a/xidt s

o7 (15a)
V.= a_L = J.(lu'dt

t

X; = J.J.(lﬂ'dldt . Z; = J.J.(lz[dtdt (15b)
In a small time step, one can get:
in = ino T ayt
Vi= Viet+ a.t (16)

Xi= X+ Voot + tzaxi/2

L= Zi+ Vt+ t2azi/2

Eqgns. (12), (15) and ( 16) constitute the for
ward model of the slope. Based on the known geome-
try and material properties, one can find the displace-
ment of the slope.

If Eqn. (12) is used directly, double precision
variables are needed to use in programming since most
numbers need at least 16 digits. In order to improve
the computation accuracy and make the numerical
computation stable, we make a transformation of pa-
rameters Y. Let

Y= Yo+ AY
where Yy is the value of ¥ when in the state of lim-
iting equilibrium. Since the acceleration of any slope
body will be ay; = a.; = 0 in an equilibrium state,
from Eqns. (5) and (11), one can get

A1 Y()+ G(): 0

A3 Y= C
Gy, Cy is the values of G and C in the limiting equi-
librium state. Substituting Eqn. (17) into Eqn. (12),
the equation becomes

- Ay - AG
A, oIA"y]: 0 (18)

0 Aj AC

(17)

w here
AY= Y- Y,, AC= C- Cy
AG= G- Go= (0, Am1g, A, 0, Amg, N)
In order to keep symbols simple, we will still use

- AG
Aa}’] L= 0
AC
in the rest of the paper. Eqn. (18) can still be written

X=

as
AX= L (19)
It is obvious that A'Y describes the difference be-
tween the present state and the stable state.

3 KALMAN FILTER MODEL

The state of a sliding slope can be described by
the follow ing state vector,

X=(x1, V', o', AYH" (20)

where

Xi= (%1, 21, A % zA)"

V= XT= ((va1, 9:1, A vai, 0, A)T

a= V= (av, a1, A au, an, A)'
X is the vector of displacements, V is the vector of
velocities.

Four different state transition models can be de-
rived:

1) The first one is based on the rigid body mo-
tion equation and on the forward analysis model. Ac
cording to the rigid body motion equation, when the
state transits from state k to state k+ 1, the displace-
ment and the velocity will change to:

X1,k+ 1= Xl, L+ [Vk-i- t2ak/2

Vike 1= Vit ta;

In real situations, the external forces acting on a

(21)

slope body usually will not change except when for
example the ground water level changes after rains or
ground shaking is induced by earthquakes. Therefore
it is reasonable to assume AG= 0 and AY,, 1= AY,.
If there exists any change in the external forces, they
can be considered as state transition errors ( system
noises) if the changes are not very significant. Based
on this assumption and Eqn. (18), one can get

AYp 1= AY,
ar, 1= M 'A MY, 1+ M AG (22)
= M‘lAlAY/c

Combining (21) with (22), we can get the fol-
lowing state transition equation:

Xy 1= DX=
I d %1/2 0 Xk
0 I tl 0 Vi

23
0 0 0 M 'Al| a (23)
0 0 0 I AY,

2) The second state transition model is based on
the forward analysis model only. The time-dependent
state equation is

Xy 14
& | V© a M 'A AY+ AG
X"=| ¢ |= = =
a 0 0
Ayt 10 0
|4 0 7 O 0 X,
M 'AaY] |0 0 0 M 'A| vV
0 oo o0 o0 a
0 0 0 0 0 A
(24)
where
s X po_ 0Xy
0= X1= 5
at = %‘;, AYS = aaA;Y, AG= 0
By discretising the above continuous-time state

. . . . 8 . .
equation using series expansmns[ I, a discrete-time

state equation is obtained:
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Xiv 1= DX,= A, 0 0 O 0
I 0 M 'Ay2| Xk 0 A 0 0 0
1 B>= , Lo=
0 7 0 tM™ " A, Vi (25) 0O 0 A, O 0
0 0 I 0 a 0 0 0 As AG
0O 0 0 Ji AY, In the real situations, Eqn. ( 32) may not be

3) The third model is an improved form of the
second. The model given in Eqn. (25) above can be
substituted by

[ o *M 'Ay/2l| Xus
Xiv1= OXp=|0 [ tM‘lAl Vi
0 0 I AY
(26)
that is, in this model
X,
X=|V
A

This means that the third model is the same as
the second, but has less parameters in the state vec
tor. The model is therefore simpler.

4) The last model is the one widely used in ki-
netic systems. In this model, only the rigid motion e
quation is considered!”,

I 0?12 | X
0 I ul Vi (27)
0 0 1 a

The stochastic state transition equation is ob-

Xk+ 1= CDch:

tained if the state transition errors (the system nois-
es) w are added to Eqns. (23), (25), (26) or (27):
Xk+ 1= CDch+ w (28)
Any of the above four models can be used as the
state equation in Kalman filter. In the following sec
tion we will discuss which will be the best.
In slope deformation monitoring, observation e
quations can be established for all the observations,

Li=B X+ § (29)
where
B=(I 0 0

and L denotes the observations vector, € is the ob-
servations error vector. Under the assumption that
the slope bodies are rigid, one can establish some con-
straints. For example, according to the forward mod-
el (18), we have
Arap 1= 0
A3AY, 1= AC

These can be used as geometric constraints. Be

(30)

sides, the displacements and velocities of the two
blocks that are adjacent to each other must be the
same in the normal direction of the contact surface.
Therefore, similar to Eqn. (9), the following should
hold:

A2X1, 1+ 1= 0

A2V 1= 0 (31)

Eqns. (30) and (31) can be rewritten as

B2Xii 1= Lo (32)
where

completely satisfied due to the errors caused by the
assumptions. For example, the blocks will always
more or less deform and therefore are not exactly
rigid. Besides, the failure surfaces may also be known
only approximately. One better way to treat the con-
straints is to consider them as observations with cer-
tain uncertainties,

Bsz+ 1= L2+ 19} (33)

where & is an error term. The above equations can
be used as observation equations.
Based on Eqn. (28), we can get the following

Kalman filter model

Xiy 1= DX+ w (34)
L. 1= BX}s 1+ EPpy i (395)

B, Ly i1
B:IBJ’L“”:I L |

Py 0 &
Pk+1:|0 P€2,8=|82
The computation formulae of Kalman filter
are! !

X 1= DX,

0%, = DOy, G+ Q.
X+ 1= Xpo 1+ Ox BT(BQZMBT*‘

k+ 1

Q1) (Lis 1— BXys 1) (36)
Ox, = Ok, - Ok B'(BQx, B'+
O 1) lBilw 1
OI_[]O]
Xis 1= }k+ 1+ J(Ly— BE/H 1)
Ox, = (I- JB) Ok, (37)
J= Ox_ B"(BOx B"+ Q1)
w here

Qv 1= Piv1, Qu= P

In practical computations, two problems must be
considered when the above formulae are used, 1. e.,
the initial values of X, and the variances of the sys
tem errors w and the model errors & (or the model
uncertainty) . The initial values of X can be deter-
mined by using the condition of limiting equilibrium.
If a slope has already begun to slide, the displace
ments, velocities and the accelerations can be deter-
mined by using initial two epochs of surveys.

4 NUMERICAL EXAMPLES

Stimulated examples are given here to show the
feasibility of the Kalman filter model presented
above. The block system used in the stimulated ex-
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amples is similar to that shown in Fig. 1 and Fig. 3.
The parameters of the system are taken as: m = 798
t, ma= 4kt, ms= 400t, o= 60, a= 45, az= 30,
Bis= 60 and By3= 75, and the cohesion force c¢= 0.
The coefficient of friction k£ in the state of limiting e
quilibrium is £ = 0.7670573627281236. One ob-
served point was placed on each of the three blocks,
and observations of the horizontal and vertical dis-
placements of the observed points were stimulated by
computer. The observations were taken once every 5
days for one year period. The observation errors are
given by computer. The variance of the stimulated

P 2 2
errors is 0= 3> mm = 9mm".

Fig. 3 Sliding block on plane

After the observations were taken, the Kalman
filter model (23), (25), (26) and (27) were used
respectively to process the stimulated data. Figs. 4,
5, 6 and 7 give the results from the different models.
In these figures, the stimulated observations, the real
displacements and values computed by the Kalman fil-
ter are given. Table 2 lists the following values for
each of the Kalman filter models:

§= Zaek— %)’

(38)

where £ and x are the filtered and the true dis-
placements respectively, and n is the number of
epoches.
It can be seen from Table 1 and the figures.
1) The results from the first three models are
much more accurate than the original observed valk
15
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Fig. 4 Displacement curves from model 1

ues. The variances decreased by 6 (3%/1.2262) to 29
(3%/0.5562).

2) The results from Eqn. (25) are the same as
those from Eqn. (26). This means the two models
are equivalent, but the computations using Eqn. (26)
are simpler. The results from both Eqn. (25) and
Eqn. (26) are better than those from Eqn. (23).

3) The results from Eqns. (23), (25) and ( 26)
are all significantly better than those from Eqn. (27) .
This means that the Kalman filter based on the me
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Table 2 Filtering deviations

Model Parameter X1 VA X> Z, X3 Z;
Model (1) 8x 35.06 105. 15 56.32 56. 34 67.93 22.68
’ Os 0.708 1.226 0. 897 0. 897 0. 985 0. 568
Model (2) 8x 33.40 100. 16 53. 66 53. 68 64.71 21. 60
ode O 0.691 1. 196 0. 876 0. 876 0.962 0.556
Model (3) 8x 33.40 100. 16 53. 66 53. 68 64.71 21. 60
? Os 0.961 1.196 0.876 0.876 0.962 0. 556
Model (4) 5 242.23 338.58 502. 48 354.28 317. 60 383. 48
058 Oy 1. 860 2.199 2.679 2.250 2.130 2.341

chanical model of the slope is significantly better.
5 CONCLUSIONS

1) Under the assumption that the slope bodies
are rigid, the dynamic model of slope sliding is de
rived. If we can get the accurate mechanical parame-
ters, we can derive the dynamic process of a slope de-
formation.

2) According to the dynamic model, the system
equations of Kalman filter are constituted. The me
chanical status of a slope is hence combined with the
monitoring data by Kalman filter. Based on the prin-
ciple of mechanics and existing Kalman filter ap-
proaches, four kinds of Kalman filter model are pre-
sented. The results show that the Kalman filter mod-
els based dynamic model is significantly better.

3) The uncertainty of the model or model error
usually influence heavily on the results of analysis in
many fields. In this paper, it is take into considera-
tion by the additional fictitious observation equations.

4) As the mechanical properties of slopes vary
considerably from one to another, more research is
still required to take into account to study the special
characteristics of the various types of slopes.
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