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[ Abstract] The optimal condition and its geometrical characters of the least-square adjustment were proposed. Then the

relation between the transformed surface and least-squares was discussed. Based on the above, a norriterative method,

called the fitting method of pseudo polynomial, was derived in detail. The final least-squares solution can be determined

with sufficient accuracy in a single step and is not attained by moving the initial point in the view of iteration. The accura-

cy of the solution relys wholly on the frequency of Taylor’ s series. The example verifies the correctness and validness of

the method.
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1 OPTIMAL CONDITION AND ITS GEOMETRI-
CAL CHARACTERS

The adjustment model with n observation and
m(m < n) parameters may be written as
lr - yr(x(l) + er
(1)

¢~ N(0,g")
where [I"(r=1, 2, .., n) represents components
of observations; e (r = 1, 2, .., n) represents
components of error; ¥y (u’) (a= 1, 2, .., m) is

assumed to be a nonlinear map from unknown para-
metric sets { x“} to components of adjusted values; e’
is subjected to be a normal distribution and g’ = E ([’
V)= E(é*¢)is the variance covariance of error
vector.

With the method of nonlinear least-squares ad-
justment, the minimum of Eqn. (2) can be sought:

F(x)= ¢(x)gne’(x) (2)

It is known that a necessary condition for ex-
treme value of a general continuous and differentiable
multivariate function X ) is VX ) = 0, it is to
say that X is a stable point, however it is not suffi
cient. One of its sufficient conditions is that the
Hessien matrix of X is positive-defined. The Taylor’ s
series expansion of Eqn. (2) evaluated at X is repre
sented as

F(x)= F(&)+ Fo(%) &+

Fup() M m™/2+

The above condition of multivariate function’ s
extreme value was applied to F(x )'®, then

e(x)grdu(X) =0 (3a)

and

Kolle(x) ll < 1 (3b)
where

ai2) = Boin), o= 380s),

M= x'- 2 K,= /1,

[ = AL(2)gAb(2) ",
and

II: A) ||grstBL\S\CGL‘S\CB

lle( %

Eqn. (3) is the sufficient and necessary condition
of seeking the extreme value of Eqn. (2). It has a dir
rect geometrical senses: Eqn. (3a) means that the
residual vectors are orthogonal to the tangent space at
the extreme point; Eqn. (3b) means that the extreme
point lies in the circle whose center is y and whose ra-

dius is I/ K ,, .

2 TRANSFORMED SURFACE AND LEAST
SQUARES ADJUSTMENT

Iterative method was often used in solving the
nonlinear parametric adjustment. To some extent,
this method improves the accuracy of the adjusted re-
sults, but it is difficult to assess some characters of
the resolution in the whole. However it shows us an
important inspiration from the progress of solving the
model: the point which minimizes the sum of squares
derivations must be a stable point. In the view of dif-
ferential geometry, the residual vector should be or-
thogonal to tangent surface at the stable point. Based
on the above condition, we construct a hyper-surface,
called Q) -surface. This surface satisfies the following
conditions:

1) It comes through the observational point ( .
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2) A point in the Q -surface is generated by in-
tersection of the normal plane and the line containing
the point () , and this line is orthogonal to the normal
plane.

So the initial point moves in the model surface,
the corresponding point in the hyper surface would
accordingly vary. When the varied point in the hyper
surface coincides with the point  , the correspond-
ing point P in the model surface is the adjusted point.

The characters of the hypersurface.

1) Construction of the Q -surface

As shown in Fig. 1, based on the initial point
P, the dimensions of the tangent space of the model
at the point P is m , and the dimensions of the nor
mal space is n— m . Because there are n— (n- m)
= m lines which are orthogonal to the normal space
through point @ in the n dimensional space, the hy-
persurface is also m dimensional manifold. For exam-
ple, when the model surface is the two-dimensional
manifold ( sphere) embedded in three-dimensional
space, the dimensions of the tangent plane through
random point P are two. There is a one-dimensional
normal line through this point and there is a two-dr
mensional plane crossing the point () that is orthogo-
nal to the normal line. When the selected point P
varies along the sphere, the track of the point P is
also a sphere.

2) The hypersurface is also continuous and dif-
ferentiable.

Fig. 1 (-surface and parametric adjustment

3 PROCEDURE OF SOLVING ADJUSTED MOD-
EL

Through the above analysis, it is known that the
hyper surface () plays an important role in the adjust-
ment. When point P in the model surface moves in
the model surface, the corresponding point P’ in the
Q -surface would varies. Conversely, When the point
P’ in the Q -surface moves along the Q-surface, the
corresponding point P in the model surface would
varies. So the vector PP and P’ would vary accord-
ingly, as shown in Fig. 2.

Write PP as{y "= y'}J= { &'} and P'Q as { )
-y "} = (N}, where {y"} is the function of
{y’")and{ &’ "} ,which is related to { &'} .

Let

N = 88 (4)

Fig. 2 Construction of (Q-surface

So if the obvious functional relation of Eqn. (4)
is found, the direct method of solving adjustment
model would appear. Then it would be resolved by
constructing a pseudo-polynomial.

Before commenting further, the notational con-
ventions will be introduced as

1) Convention of the upper/ lower indices

The lower Roman letters r, s, .., vary from 1
to n ; the upper Roman letters L, R, .., vary from
m+ 1to n; the lower Greek letters a, B, .., vary
from 1 to m .

2) The coordinate of the points in the () -surface
is expressed as {y"} (point Q as {y{/ ) and the coor
dinates of the points in model surface as { y" } (point
P as{y'}). Write “ A” before the coordinate to in-
dict the coordinate difference of the points in the same
surface and “ 67 before the coordinate to indict the
coordinate difference of the points in the different sur-
face.

We solve model (1) by four steps as follow ing.

3.1 Three transformed expressions of model sur-
face!®!

Firstly, the equation of the model surface is

y' =y (x") (5)

Expand Eqn. (5) into Taylor’ s series at initial
value x () as

y =y (x0)+ AL+ %BA\:“L‘S\:B/2+

Doy e 2P /64 (6)

.
where M= x“- x0; Ag = é (x0); Sp =
X

2 r 3 r

w _ 23 k w
aXaaxB(xO) and qélBY_ axaaxﬁax Y(xo) .

Eqn. (6) corresponds to the Gaussform of the
model surface.

In Eqn. (6), a subset of m equations is divided
into a group and a subset of remaining n— m equa
tions is divided into another group, which are respec
tively

yll: yll(xa) (73)

yh = yL(xaﬁ (7h)

If J = (?;)mxm Z0, express {x") by {y")
as

xt= xt(y")



Vol. 11  Ne2

Fitting method of pseudo-polynomial for solving nonlinear parametric adjustment - 313 +

x“(y0) + R4+ Apty /24
sy "N N6+ (8a)

and
yi= oyt a) = ¥ x(y")) = YY) (8b)
A_y}‘: yx_

a aﬂ’_a () a
where yga A= B AMyo), Ay =
Y
2 a

a3
ay }»ayK (}/8) and s = ay Aaykay&(y((;))-

a

Eqn. (8) is equivalent to the Monge form of the
model surface.
Substitute Eqn. ( 8) for Eqn. (7b), it can be
gotten:
Nt =yt =[5y = 0 (9)
which is the functional form of the model surface.
The expression of each order derivates and their
relations can be derived.
Let AL = (AL AS); Qo= (s Db} and
By = ey, quy} . The differentiation of the both
sides of Eqn. (9) with respect to {y"} is'®
L L
NE= Do N Nk = - 25 d0 (10
Y Y
The further differentiation of the both sides of
Eqgn. (10) with respect to {y"} is
i 2N 2 L
Vo= 5Py =™ 3y%0y"
and (11)
_O°N" Py

., 3 7L 3L
N = = —
P 0y 0y 0y T T 0y 0y 0y
If adopt { y“} as the coordinates of the model sur
face, the Gauss-form of the model surface is written

asy = h'(y“) and the partial derivates with respect
to new coordinate system are listed as

oy _ M@LRI: (- N

aya - ayaa aya (12@)
2 r
29y {0, = Ng) (12b)
3 r
0 0y {0, - N/ (12¢)

Due to the deriving rules of the compound func
tion that is

M — M . M (13)

oyt T oyt oyt

Substitute Eqn. ( 13) with the above outcomes
{ & - NEj= (AR AKJRE . then

ARl = § (14a)
and

Ni = ASRp (14b)

The further differentiations of Eqn. ( 13) are

Afv=— RIBRIRY (15a)
Nir=- (NhSh+ ) RIRY (15b)

Similarly, ©}t and N fr can be obtained.

3.2 Computing [y}
As we know that { &) = [y — y} is orthogonal

to the model surface, it must be expressible as a linear
combination of the n — m gradient-vectors as
&, = NJCy (16)
On the other hand, { &} is orthogonal to gradi-
ent vector, so
NE§ =0 (17)
Substitute Eqn. (17) with & = &- & and &
= g"&,, then Nig"NYCy = NE& was gotten.

The resolutions are as follows' !

Ck = QriNL&" (18a)
& = g"NiCk (18b)
where Qi B" = & and B = NEg"NY .

3.3 Construction of pseudo- multinomial

From Fig.2, & = yp— y and & = y" -y’
can be found, among which m variables that can be
written as §“ = yb— y“and §* = y"— yis select-
ed. In order to construct the pseudo-multinomial, it
can be proved that {y"} is the function of {y“) .

Let 4= y"— y“and A" = yb - 5", then
{ &) must be the function of { &“} . Again let

Af= Qo &+ Ch

ayﬁ - ayﬁ ( 193‘)
- 82 ~a 82 a’/‘a
%, = ayﬁgyy = 2%, (19b)
Then we can get
oN"  Oyh- ;a)——AN“
o Tt T
P (20)
=- &,
dy"oy" ’

We must calculate the inverse partial derivative

to obtain { &} which is a function of { A"} . Let R%
Q:)La Ka _&NL

= d A, = )
oy" T T oyToy”

clusion of Eqns. (14) and (15), the following equa

The similar with the con-

tion can be gotten:
AR = §

and

(21a)

My =—- Ru OnRERY (21b)

From Eqn. (21), the partial derivative of all
powers can be calculated if A% and Onr are known.
The follow ing is the formula to calculate them

Ab= &+ T Ew+ GLUE (22)
where T = g"- GiP™; Ew= CNls; G
P*Qxi;  Uk= Niusy'; P%= g®N{; G
OxW:; W' = Nu&"and B Oy = & B =
N g"NY = NE'WY + WY+ g¥NE+ M.

With the same method %, can be gotten. There-

fore { A"} can be expanded into Taylor’ s series as

v = RO TR . (23)

whose linear items have not only the first partial
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derivative but also the second partial derivative, and
the second power items include not only the second
partial derivative but also the third partial derivative.
The formula can improve the accuracy of adjusted val-
ues.

3.4 Calculation of adjusted values and parameters
and evaluation of their accuracy
After the calculation of { &“} , the parameters
based on the transformed relation between { ArB} and
{ &} can be gotten, that is
M= RN+ M APNY2+
S &N N6+ (24a)
The other n— m adjustments can be gotten with
the Monge’ s model surface
Nz Al xS a2+
dhs 0y iy 6+ (24b)
From Eqn. (24), the parameter values and the
adjusted values of the corresponding adjusted point P

are
= x"+ M (25a)
Y=+ (25b)
At the meantime the mean square error of unit
weight is

mo =

&'gnb° J(V?)— Y )gn(yo— y')
n- m n- m
(26)
The covariance of adjusted parameters is
K®= RY(%)g"RJ(%) (27)
The other adjustments can also be calculated
with the same method.

4 ANALYSIS ON CASE

There are error equations

1 1 1
l"= cosx + v
2 . 2
[“= sinx + v
1 2 .
where [ and [° are measurements which are not

relative, [' ~ N(2,1) and [* ~ N(2,1); x'is the
observing parameter whose initial value is x § = T/ 3;
v" and v? are errors. Then the equation of the model
face is

I'= cosx'

[* = sinx'

From the method mentioned above, we can cal-
culate by four steps as following.

Step 1: to calculate the partial derivative of all
pow ers.

(A1, AT) = (- 0.866, 0.5),

Ri=- 1155 Ni= 0.577

(Q, )= (- 0.5 0.866),

Ali=- 0.770, NTi= 1.540

( dy, )= (- 0.8660.5),

i = - 3.080, N1 = 3. 080

Ni= L Nb= Ni= Nih=0

Step 2: to calculate &'

B*=1.333, Q= 0.750, C,=1.50

&'=0.866, y'= 1.366

Step 3: to calculate the coefficiences of the pseu-
do-multinomial.

A= 2.536, Ri= 0.394

Step 4: to calculate all adjusted values.

N =y = 4= 0.250, ' = 0.750

a'= x - x'=-0.321, 2= 0.726

NP= = 4P =-0.202, 2= 0.664

mo= t1.830

The method is compared with the linear method,

the result is listed in Table 1.

Table 1 Comparison between pseudo-multinomial
method and linear method

Method x ! % y? mo
Linear method 0.415 0.915 0.403 1.931
Pseudor multinomial = ¢ 756 g 750 0.664 1.830
method
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