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[ Abstract] A model for dendrite growth during rapid solidification was established on the basis of BCT model and
marginal stability criterion through modified Peclet numbers. Taking into account the interaction of diffusion fields, in-

cluding solute diffusion field and thermal diffusion field around the dendrite tip, the model obtain a satisfactory results to

predict the dendrite velocity and the tip radius, which agrees well with the experimental data from references in Cur Ni al-

loy.
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1 INTRODUCTION

Rapid solidification ( RS) processing is now well
established for producing materials with metastable
and refined microstructures and improved properties.
RS is a solidification process with high growth velocr
ty (1~ 100cm/s) obtained by the rapid rate of melt
cooling, high initial nucleation undercooling or by the
rapid moving of temperature field'''. Constitutional
effects of RS include extension of solid solubility and
the formation of metastable phases due to nucleation
and growth competition between the candidate phases
in the undercooled melt.

many theories %~ °!

For rapid solidification,
about nucleation and growth were put forward to ana-
lyze the solidification behavior and the microstructure
formation. In the present paper, we’ Il pay attention
to the dendrite growth phenomenon.

For the dendrite growth in undercooled melt,

[3-6] hased on the Ivantsov

many theoretical models
solutions for the thermal and solute diffusion fields,
negative temperature gradient ahead of the tip and the
marginal morphological stability criterion of the solid/
liquid interface, have been established to understand
isolated dendrite growth behavior. Accordingly, ex-
periments of dendrite growth in rapid solidifica

17~ 191 have confirmly supported the current den-

tion
drite growth theories.

For the directional solidification, a model re
ferred to the Laxmanan’ s model' " ! was developed
with a positive thermal gradient ahead of the dendrite
tip. While in undercooled melt, the phenomenon of
directional growth of dendrites have also been ob-

[31 " Thus, on the assumption that

served in practice
the diffusion fields around the dendrite tips being
overlapped, a directional dendrite growth model in
undercooled melt has been developed by LI et al' ! on

the basis of BCT model and marginal stability criteri-
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on.

The LI’ s model incorporated different forms to
express the balance equations. As for temperature
distribution, it is P, = € which is equivalent to the
Ivantsov solution; while for solute distribution, it is
Q.= Iv(P.) which is equivalent to the spherical so-
lution. During deduction of the mass and heat trans
fer balance equations, there was also a mistake proba-
bly occurred in the balance equations. As for mass
transfer, the balance equation vel (1- k) = DG,
ought to be multiplied by two on the right side, and
then be replaced by

ver (1- k) =- 2D,G, (1)

Similarly, the heat transfer balance equation
v AH = K |G should also be corrected by

v AH = 2K,G, (2)

In order to solve such problems mentioned
above, we have developed a modified model for den-
drite growth in undercooled melt based on BCT mod-

(14~ 17] Wlth U_Ili'

ell® and marginal stability criterion
fied assumption of a dendrite with parabolic revolution
shape, in which both mass and heat distributions a
head the dendrite tips accord well with Ivantsov solu-

tion through modified Peclet numbers.
2 MODIFIED DENDRITE GROWTH MODEL

During the growth of dendrites, especially for
the constrained dendrites in an undercooled melt, the
released solute and latent heat of fusion may interact
through the overlapping of the diffusion fields '
Such a dendrite growth mode is so sophisticated that
the exact mathematical solution for this mode of den-
drite growth is very difficult. Therefore, we adopt an
analytical way similar to Laxmanan’s treat-
ment' ' '?' | The method combines the interaction of

dendrites into a factor A to describe the diffusion
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fields related to the tipradis & & R, where )\]sa p- )R (10)
scaling factor deflned as a ratio between 6 and R ’ 2D,
express the interaction of the dendrites, 0 is the ef- where D) is the solute diffusivity in liquid. It can be

fective diffusion thickness, R is the tip radius.
Firstly, we give some assumptions that during
the process of solute transfer in a binary alloy, any
chemical reaction is excluded, and neglect the diffu-
sion in solid, the heat convection in the liquid and the
temperature dependence on the material parameters.
Thus, through the solute balance Eqn. (1), we can

obtain
sl (1= &) =— 2D1(g'f)5“ (3)
where (gf) 5, 1s the solute gradient ahead of the

tip, which can be described as

(ﬂf) 5 == (ci = co)/ & (4)

Substituting Eqn. (4) into Eqn. (3), we can ob-
tain

v & ¢~ cg

2D1 T e (1- k) (5)

From the assumption &= A * R, Eqn.(5) can

be revised as

v MA*R ¢l - co
2Dy T e (1- k) {9
or
A*P.= Q (7)
where P.= MR/2D) is the solute Peclet number,

¢ is the solute concentration at the dendrite tip.
As for dendrite grow th controlled by thermal dif-
fusion, we can obtain a conclusion on the assumption

of 6= A*R as

v* AN*R Pr — Py
2 T - Mo, (8)
or
}\t ¢ Pl = Ql (9)
where P,= vR/2aqis the thermal Peclet number,

AT = T - T wis the thermal undercooling.

Note, in calculating the concentration gradient
at the tip in dendrite growth models proposed earlier,
it was assumed that the diffusion distance in front of
the tip is equal to the dendrite tip radius R, and then

the solute gradient always be regarded as (gf) 8 =

(S)r== (i = c)/R (or (4T ) 5= (AL) 4 = -
(T1 - To)/R for thermal gradient) in simplicity.
As we have discussed above, the diffusion distance
might be different from R due to the interaction of
dendrites and other factors and should be replaced by
M, where Ais a positive quantity, which will be
discussed in section 4.

On the basis of the assumption above, for den-
drite growth controlled by solute diffusion, the modi-
fied thermal peclet number can be described as

explained by the ratio of the dendrite radius R to the
thickness of diffusion fields 6. For this reason, the
value of dendrite growth velocity v must be decreased
due to interaction of diffusions, however, compared
with isolated dendrite, the total value of & should be
increased.

According to the assumption of dendrite with
parabolic revolution shape, the solute distribution in
[4].

(11)

Q. is defined as the dimensionless solute su-

liquid can be described with Ivantsov solution
Q= In(P)
w here
persaturation.
On the similar assumption, for dendrite growth
controlled by thermal diffusion, the modified thermal
peclet number can be described as

P/l: }\LR

2(11
where q is the thermal diffusivity in liquid.

(12)

And the thermal distribution around the tip in
liquid can be described with Ivantsov solution:
Q= Iv(P)
w here

(13)
Q is defined as the dimensionless undercool-
ing.

According to the dendrite growth model of
BCT!% the dendrite tip undercooling can arise from
four sources, i. e. requirements for diffusion of heat
and of solute from growing tip, the effect of interface
Thus the total un-
dercooling AT consists of four contributions: the

curvature and interface kinetics.

thermal undercooling AT, the solute undercooling
AT ., the curvature undercooling AT, and the kinetic
undercooling AT y.
AT = AT+ AT .+ AT.+ AT« (14)
The forms of the four undercoolings are similar
to that from BCT model except that the Peclet num-
ber should be modified.

Accordingly, the marginal stability criteri-
on'" " can also be expressed through modified
Peclet numbers as

r/d
N=PL, 20 Plei=h) | (13)
¢ 1= (1- k)Iw(P')
w here
& _L2 4= 1- -1
AT 1
1+ ¢ p?
C.= 1+ e
1- 2k- |[1+ _*L/z
t

3 MODEL RELIABILITY

In order to prove the reliability of this modified
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model, we selected some experimental data measured
by Herlach and LI et al''* "' to compare with the re-
sults calculated by this model. From LI’ s discussion,
we know that A. < A and we’ll only discuss the role
of A. Using the physical parameters of CuzoN iz list-
ed in Table 1, and assigning different values to A,
we’ ve obtained the relationship of growth velocity
and the corresponding undercooling in Fig. 1. By
comparison, the measured data of dendrite growth
velocity and undecooling were also marked. In Fig. 1,
the curves 4, 5, 6, 7 are calculated with constant
values respectively as A= 1, A= 1.5, A= 2.0, and
A= 2.5, and the curve 3 is calculated with relation-
ship A= 2.5- 0.4v, the curve 2 is calculated by
Herlach ' and curve 1 by LI'"®!. From Fig. 1, it can
be seen that the curve calculated with relationship a
grees better with the experimental data than the re-
sults calculated by Herlach and LI.

- 30
- " J—Expermmental date by Herlach!™!
] O—Expenmental date by LI
= 25K —
E 1—Calvulated by LI 3
el 2—Calculated by Herlach
2 20} 3 Caleutaed with 3, =2 5--0.4v 5
3 4 Caleulared with 2,21 0 6
L 5—Caleuleted with A,=1.5 4
< 15 [ 6—Calculated with A,=2.0 7
2 | 7 Calouted wib 4,=2.5 3 o
E 10t
8 X
V] 1 f 1
50 100 150 200 250
Undercooling/ K

Fig. 1 Relationship between dendrite growth
velocity and undercooling calculated by
different models with experimental data

Table 1 Physical properties of

Cu7oNizg alloy! % 1

Parameter AH /( J*mol 1) ¢/ (Jomol” Lk~ 1) D]/(mz's* l)

Value 13940 31.436 4.73
Parameter a/(m?*s™')  I'/(Ke*m) M/ (kgemol™ ")
Value 40x10°¢  2.627x1077 0. 062
Parameter (/ (kgem™ ) ko mi/ (K%~ ")
Value 8900 1.485 4.567
Parameter v/ (me®s ') ao/ m T/ K
Value 2000 3.0x 107 " 1513. 48

4 DISCUSSION

4.1 Solute and thermal diffusion field
The thermal diffusivity is generally about three

orders of magnitude greater than the solute diffusivi-
ty, so that the thermal diffusion length [/, in the liq-
uid must be much longer than the solute diffusion
length 130

marked solute trapping

Especially for rapid solidification, the

11821 confined the solute dif-
fusion to a narrow region around the tip. Accordingly

11, 12
to Laxmanan! '"> 2!

, A is much larger than A due to
the great difference between the thermal diffusivity
and solute diffusivity in liquid, especially for rapid so-
lidification.

To get an insight, a comparison between the so-
lute diffusion length [., and the thermal diffusion
length [, is made as follows. The solute diffusion
length in the liquid in the growth direction is

D
lo= & = 71 (16)
The thermal diffusion length in the liquid in the
growth direction is

L= 8= (17)

Now, let v= 1~ 10m/s, R is in the range of
(1~ 5) x 10" "m, [, is about the same order of D1,
10" m or so, [,1s about the same order of a;, 10~ €
m or so.

According to the orders of diffusion length and
the value R, it can be deduced that the solute diffu-
sion around the tip is confined to a very narrow re-
gion, and that the solute diffusion interaction among
the dendrites can be ignored !, As far as we know
from LI’ s discussion, the stronger the interaction be-
tween the dendrites is, the thicker the diffusion field
in the liquid consequently becomes. Thus with the in-
creasing of A the diffusion length becomes longer,
the dissipation of latent heat (or solute) becomes
more difficult and the dendrite growth velocity de-
creases.

In summary, from the analysis above, we can
obtain that the value of A being equaled to unity
means that the effect of interaction through the over-
lapping of the diffusion fields could be ignored, which
accords to the growth mode of isolated dendrite. The
value A= 1 and A> | means that the interaction of
solute diffusion can be neglected, which usually ap-
plied for growth of constrained dendrites only con-
trolled by thermal diffusion. While the values A> 1,
A= 1 mean that the interaction of thermal diffusion
can be neglected, which usually applied for growth of
constrained dendrites only controlled by solute diffu-
sion.

4.2 Comparison of curves with different A

Fig. 2 shows a series of curves between v and R
calculated with different A value in the case of Cu-Ni
alloy from Eqns. (14) and (15). From Fig.2, we
can know that at the same velocity, the dendrite tip
radius calculated with higher A is bigger than the
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case of lower N. Meanwhile from Fig. 1, we can also
know that for rapid solidification, the required under
cooling with higher A is smaller than that with lower
A at equal velocity. From above, it can be concluded
that with increasing A, the influence of thermal in-
teraction between the dendrites on the growth veloci-
ty becomes more remarkable, which in principle, a
grees with our deduction. In addition, the curves cal-
culated with A= 2.5— 0.04V are more flat and
smooth than the curves with constant A, but the
characteristics are similar.

5

L—Caleulited with 1,=2.5-0.4 »
2—Calculated with 1,=1.0

4 3—Calculated with A,= 1.5
4—Calculated with 4,=2.0
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E
2
K
_g 3
b
o
P
g
g
=
) 1 L 1 i
0 5 10 15 20 25 30

Dendrite growth velocity/{m*s™!)

Fig. 2 Curves of dendrite radius and
dendrite growth velocity with different A( A= 1)

4.3 Relationship between A and V

In the present model, we firstly consider the
scaling factor A as constant, and the calculated re-
sults are depicted by curves 4, 5, 6, 7 in Fig. 1.
Compared with the experimental data, it can be seen
that under lower undercooling ( about 50~ 140K),
the experimental data fit the model better with higher
value of N, while under higher undercooling ( larger
than 180K), the more appropriate value of A is low-
er. Accordingly, we think that there must be some
factors that influence the scaling factor A. From
Kurz " and Aziz '** "1 we know that in rapid solid-
ification, with increasing growth velocity, the solute
trapping and the thermal dragging increase remark-
ably, thus these effects will decrease the solute en-
richment and the heat accumulation at the dendrite
tip, that is to say it will shorten the diffusion length
of the solute and the heat. In addition, during the
mathematical deduction, many assumptions such as
neglecting of the heat convection in the liquid and the
temperature dependence on the material parameters
have been made in order to simply the calculation,
but all these factors are evident in the case of RS.
Furthermore, there are also many other factors,
which can not be directly described. T herefore, we
should find a relationship to consider all these factors

which are difficult to express analytically. In the pre-
sent modified model we approximately define the scal-
ing ratio Aas a function of dendrite growth rate by a
linear relationship A= — aV+ X, which is called as
modified factor determined by the effects of all the
factors mentioned above, X is an extrapolating value
when the growth velocity approaches to zero.

Besides, it must be emphasized that for rapid so-
lidification, neglecting the solute diffusion interaction
means that the dendrite growth velocity is mainly
controlled by thermal diffusion. However, at low
growth velocity in conventional solidification and
rapid solidification with the growth velocity below
100 em/ s( not deeply undercooled), the solute inter
action can not be neglected, therefore another rela
tionship about ought to be given.

S CONCLUSIONS

1) A modified model for the dendrite growth in
undercooled melts has been established using the I-
vantsov solution both for solute distribution and for
the temperature distribution ahead the tip, and also
incorporating the interaction between the dendrites
through the scaling factor A

2) When the dendrite growth velocity increases
with the increasing undercooling, the scaling factor A
should decrease for some reasons. An additional factor
has been employed to express such effects on scaling
factor Athrough a linear relationship with the veloci-
ty as A= M- W .

3) The experimentally measured dendrite
growth velocity in undercooled CuNi alloy is in a
good agreement with the results calculated by the pre-
sent model with the relationship of A= - 0.4v +
2.5. It is apparent that with suitable value of X and
a, consistent results can be obtained for any under
cooled alloy systems.
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