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Abstract: A neighborhood search algorithm was proposed to simultaneously schedule the waste removal quantity and the equipment 

fleet profile over the mine life for open pit mines. An initial search domain was first defined and a good schedule was obtained as the 

current best schedule by searching in this domain. Then, progressively narrower neighborhood search domains were constructed 

around the current best schedule to search for better schedules. The objective is to minimize the present value of waste removal costs 

over the mine life. The resulting schedule from this algorithm provides a complete fleet profile for each year over the mine life: the 

selected equipment models, the number of equipment units of each model, the age of each unit, as well as the quantity of waste 

removed. A numerical example of application was provided to demonstrate the feasibility and merits of the algorithm. 
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1 Introduction 
 

Having an effective long-term production schedule 

and assigning proper fleets of mining equipment to fulfill 

the schedule are crucial to an open pit operation’s 

economic outcome. Consequently, great research efforts 

have been devoted to these topics with the aim of 

obtaining optimal solutions. 

The long-term open pit production scheduling 

problem (LTOPSP) consists of determining the quantity 

and sequence in which the blocks should be mined in 

each year over the mine life, so that the overall net 

present value is maximized. Various approaches have 

been proposed to get optimal solution to the LTOPSP. 

Linear programming has been a popular approach where 

the LTOPSP is usually formulated into mixed integer 

programming (MIP) or pure integer programming (IP) 

models [1−4]. The sheer size of such models prohibits 

the straightforward application of standard solution 

techniques, and much effort has been spent on finding 

ways of solving the models in acceptable time frames. 

Two ways of block aggregation [5,6] and Lagrangian 

relaxation [7,8] frequently appear in the literatures. 

Dynamic programming is another frequently used 

approach to the LTOPSP [9−11]. A relatively new 

development in this area is the incorporation of 

geological and market uncertainties in solving the 

LTOPSP [12−15]. 

Fleets of mining equipment must be operated to 

carry out the scheduled production. Materials handling 

takes a lion’s share of the total equipment requirement, in 

terms of both capacity and cost outlay. According to  

Refs. [16,17], haulage cost constitutes 50%−60% of the 

total operating cost, and the capital cost of a truck-shovel 

system is in the order of hundreds of millions of US 

dollars for large operations. Therefore, the truck-shovel 

system has been the subject of extensive research to 

address various issues, including fleet sizing and 

scheduling. 

Queuing network models have been used to obtain 

performance parameters of open pit truck-shovel  

systems. Analyses of these parameters may indicate 

deficiencies in the system and suggest improvement 

measures. By solving queuing network models for 

different truck-shovel fleet configurations, the best fleet  
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configuration can be found for an operation. Some 

examples of publications in this area can be found 

[18−21]. Simulation is also a widely used tool for 

analyzing the performance of open pit truck-shovel 

systems. Through many runs of simulation, statistics on 

performance measures of a truck-shovel system can be 

obtained and analyzed to pinpoint bottlenecks and to 

devise possible improvements. Sensitivity analyses may 

be conducted using simulation with respect to certain 

system configurations in an attempt to optimize the 

system. A large number of publications in this area exist, 

and these are some examples of recent ones [22−25]. 

Fleet scheduling in open pit mines mainly concerns 

the determination of the number and models of trucks 

and shovels to be used in each period to meet the 

scheduled production targets. BURT et al [26,27] 

formulated the fleet scheduling problem as a MIP model. 

The model determines the number and models of trucks 

and loaders as well as their purchase and salvage  

policies, and allocates the trucks to routes and the loaders 

to mining locations. The objective is to minimize the 

present value of materials handling cost while meeting 

the scheduled production requirements. TOPAL and 

RAMAZAN [28] also used a MIP formulation to 

schedule truck fleet, with an objective of minimizing the 

overall discounted maintenance cost while achieving the 

scheduled production targets. FU et al [29] extended this 

formulation to incorporate new truck purchase. TOPAL 

and RAMAZAN [30] used stochastic IP to schedule the 

truck fleet by treating the truck maintenance cost as a 

stochastic parameter. 

Although a large number of publications exit on the 

open pit production and equipment fleet scheduling 

problems, the two problems have been treated separately. 

In fact, they are closely interrelated and can be seen as 

the same and one problem, because the quantity of 

material mined (the production) in each period is 

normally equal to the capacity of the mining equipment 

fleets operating in that period, unless the mine operator is 

willing to let some of the available equipment capacity 

be idle. Separate, optimal solutions to the two problems 

will not be optimal when the two are considered together. 

Therefore, production and equipment fleet should be 

scheduled together or, putting it another way, production 

should be scheduled through equipment fleet scheduling. 

Unfortunately, very few publications addressed the 

problem in such a way. WANG et al [31] solved the 

waste removal and truck fleet scheduling problem as a 

whole, but used a fixed truck replacement rule and 

allowed only a single truck model. GODOY and 

DIMITRAKOPOULOS [32] proposed a production 

scheduling approach that considers the purchase cost of 

added equipment capacity and the ownership cost of idle 

capacity. This approach implicitly incorporates 

equipment feet sizing in production scheduling, but the 

fleets are represented by capacities rather than specific 

equipment units. 

In this work, an optimization approach was 

presented, where open pit waste removal scheduling and 

equipment feet scheduling were integrated. The approach 

can deal with heterogeneous fleets, preexisting 

equipment, and considers the effective capacity and 

operating cost of an equipment unit as discrete functions 

of its age. The objective is the minimization of 

discounted waste removal costs. 

 

2 Waste removal problem and its solution 
domain 

 

In open pit mines, sufficient quantity of waste must 

be removed each year to expose enough ore to meet the 

ore production target. Figure 1 shows an illustration of 

the relationship between waste removal and ore mining, 

where the ultimate pit is not divided into intermediate 

pits as commonly practiced in China. One can see that 

waste (w) must be removed with the mining of ore (q). 

For given annual ore productions, the required quantity 

of waste removal may vary dramatically over the mine 

life, depending on the orebody geometry, the ultimate pit, 

the topography, and the working slope α. Supposing that 

the annual ore production is a constant equal to the 

throughput of the processing plant, the required annual 

waste removal may vary with time as shown by the solid 

curve in Fig. 2. For given orebody geometry, the ultimate 

pit and topography, this waste removal curve depends on 

the working slope, α, which in turn depends mainly on 

the working bench width b. The smaller the b is, the 

higher the α is, and the more waste will be postponed in 

most cases. The steepest feasible working slope 

corresponds to the minimum b required for operating 

mining equipment at normal efficiency. We use the term 

required waste removal to refer to the quantity of waste 

to be removed to meet the specified ore production with 

the minimum b. 

It seems that accomplishing just the required waste 

removal each year over the mine life (the solid curve in 
 

 

Fig. 1 Illustration of relationship between ore mining and waste 

removal 
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Fig. 2 Illustration of removal-as-required and constant-removal 

scenarios 

 

Fig. 2) would be the best schedule since, according to the 

above definition, the waste removal is postponed as 

much as possible. However, this remove-as-required 

scenario usually results in a large increase in equipment 

fleet size to meet the peak capacity demand, and many 

equipment units will be no longer needed after the peak 

years. This is obviously not the best schedule considering 

the very high capital cost of mining equipment. This 

shortcoming is completely overcome if a constant 

amount of waste is removed each year (the dashed line in 

Fig. 2). But this constant-removal scenario means very 

high removal rates in the early years and, consequently, 

high early expenditure on equipment capital and 

operating costs. 

Figure 3 shows the cumulative waste removal 

curves for the two scenarios when the ore production rate 

is constant. Any schedule falling below the removal-as- 

required curve in Fig. 3 is not feasible, because it cannot 

expose enough ore to meet the ore production; any 

schedule above the constant-removal curve cannot be 

optimal due to the high early negative cash flows. Hence, 

the best schedule should be sought within the domain 

bounded by the removal-as-required and the constant- 

removal scenarios. This domain is termed here as the 

solution domain. 

 

 

Fig. 3 Illustration of solution domain for waste removal 

scheduling 

As reasoned above, the waste removal schedule 

should be optimized through equipment fleet scheduling. 

Therefore, the waste removal optimization problem can 

be stated as determining the best equipment fleet for each 

year over the mine life, so that the total present value of 

waste removal costs is minimized and the cumulative 

quantity of waste removal at the end of each year falls in 

the solution domain. 

 

3 Neighborhood search algorithm 
 

The problem as defined above is a typical 

combinatorial problem. Supposing that at the start there 

is a preexisting fleet, F0. We may consider replacing, 

salvaging different members of F0 and adding different 

numbers of new equipment units of the considered 

models, to come up with different feasible fleets N1 for 

the first year. Feasible means that the quantity of waste 

removed by the fleet makes the cumulative waste 

removal at the year end fall in the solution domain. Then, 

based on the feasible fleets N1 for the 1st year, we can 

generate a total number of different feasible fleets N2 for 

the 2nd year. This process continues until the last year of 

mine life. Clearly, the number of feasible fleets explodes 

as the time advances, and the total number of fleet 

combinations will be too high to be exhaustively 

evaluated by today’s PC computers, even for a relatively 

small mine. 

Generating and evaluating all the feasible fleets in 

the above fashion is equivalent to constructing all the 

non-decreasing curves (schedules) in the solution domain 

in Fig. 3, and fitting a fleet for each year on each curve. 

There are theoretically an infinite number of such curves. 

However, considering the integer nature of equipment 

units and under the assumption of full utilization, only a 

finite number of discrete cumulative waste removal 

levels exist in the solution domain for each year, as 

represented by the dots in Fig. 3. Any curve passing one 

of the dots in each year represents a feasible waste 

removal schedule as indicated in the figure. 

Unfortunately, even with the discrete solution domain 

(DSD) represented by the dots, the number of feasible 

schedules is still too large for an exhaustive evaluation. 

Therefore, we propose a discrete neighborhood search 

approach to find a good solution in an acceptable time 

frame. The algorithm is outlined as follows. 

Step 1. Define an initial search domain (ISD). The 

upper limit of the DSD corresponds to the constant- 

removal scenario which is probably the worst feasible 

schedule due to its high early expenditure. The best 

schedule is unlikely to reach this limit, except for the last 

year where the upper and lower limits of DSD are always 

the same. Therefore, the DSD can be narrowed by 

lowering its upper limit to define an ISD. Let WUt and 
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WLt denote respectively the upper and lower limits of the 

DSD for year t. The upper limit of the ISD is set to 

WIUt=WUt−p(WUt−WLt), where p∈(0, 1) is referred to as 

the domain reduction factor whose determination is 

explained in the numerical example. 

Step 2. Divide the ISD range, [WLt, WIUt]. For each 

year t (except the last year) into n equal segments to 

define n+1 search points across this range. For example, 

if n is 4, the size of each segment is Δ=( WIUt−WLt)/4, and 

the cumulative waste removal levels corresponding to the 

5 search points are: WLt, WLt+Δ, WLt+2Δ, WLt+3Δ and 

WIUt. n+1 is referred to as the search density and denoted 

by nρ. 

Step 3. A path passing one of the above defined 

search points in each year of the ISD forms a feasible 

waste removal schedule. Fit a fleet for each year on a 

path, so that the cumulative waste removal is the closest 

to that at the search point on the path at the same year, 

and compute the path’s present value of costs (PVC). 

After all the paths in ISD are evaluated, the one with the 

lowest PVC is selected as the current best schedule. 

Step 4. Define a neighborhood search domain (NSD) 

with the current best schedule at its center. The NSD at 

each year (except the last year) consists of search points 

nρ with the mid-point on the current best schedule. For 

example, with nρ=5, the 5 search points of the NSD at 

year t are: WOt−2δ, WOt−δ, WOt, WOt+δ, and WOt+2δ, 

where WOt is the cumulative waste removal of the current 

best schedule at the end of year t; δ is referred to as the 

neighborhood increment. The NSD should not go beyond 

the solution domain DSD. Noted that to make WOt the 

mid-point, nρ must be odd. 

Step 5. Fit fleets for all paths in the NSD and 

compute their PVCs to select the best path. If this best 

path is better than the current best schedule, it becomes 

the current best schedule; otherwise, the current best 

schedule does not change. 

Step 6. Take a smaller δ value and repeat Steps 4 

and 5, until all the predefined δ values are exhausted. 

The kept current best schedule is the final schedule. 

Reasonable δ values are explained in the numerical 

example. 

The fleet fitting and evaluation process for a given 

path, in Steps 3 and 5, starts with the first year and goes 

forward year by year until the last year of mine life or 

when all the wastes have been removed. This process is 

outlined below. 

Let Wt denote the cumulative waste removal by the 

end of year t on the path being processed, and the actual 

cumulative waste removed by the end of year t with the 

fleets fitted for this path (Wft). Due to the integer nature 

of equipment units and the assumption of full utilization, 

Wft and Wt are different for most years. The objective of 

fleet fitting is to find such a fleet for each year t so that 

Wft is the closest to Wt. Let Dt be the required annual 

waste removal in year t (the solid curve in Fig. 2). 

Supposing that the fleet fitting process has arrived at the 

beginning of year t and the fleet fitted for year t−1 at its 

beginning is Ft−1. We now need to fit a fleet, Ft, for year t 

based on Ft−1. In the following description, replacement 

means that a used unit is replaced by a new one of the 

same model and the used one is salvaged; salvage means 

that a used unit is salvaged without replacement. 

Increment the age of each equipment unit in Ft−1 by 

1 and salvage those units whose ages have reached the 

maximum service life set for their corresponding models. 

The resulting fleet is the base fleet, Fbt, at the start of 

year t. The capacity of Fbt is Qbt: 
 

b

1 1

( )
mNM

t mi mi

m i

Q q a
 

                           (1) 

 

where M is the number of equipment models considered, 

Nm is the number of equipment units of model m in Fbt; 

qmi(ami) is the effective capacity of the ith unit of model 

m with the unit's age being ami. With this capacity, the 

cumulative waste removal at the end of year t, Wbt, is 
 

Wbt=Wft−1+Qbt−Dt                                (2) 
 

Comparing Wbt with Wt, one of the following three 

cases will occur. 

Case 1: Wbt=Wt. The capacity of Fbt exactly matches 

the waste removal target on the path at year t. So, the 

base fleet, Fbt, is taken as Ft, the feet for year t, and 

Wft=Wbt. This is a very rare case. 

Case 2: Wbt >Wt. The capacity of Fbt is greater than 

that what is targeted on the path at year t. Consider 

salvaging one or a combination of units in Fbt, so that the 

remaining fleet, Ft, has a capacity of Qft, which gives a 

cumulative waste of Wft, with the minimum non-negative 

bias (Wft−Wt). The algorithm of finding such a 

combination is trivial and not described. If salvaging a 

single unit with the smallest capacity alone makes 

Wft<Wt, no salvage occurs and Fbt is taken as Ft and 

Wft=Wbt. 

Case 3: Wbt <Wt. The capacity of Fbt is insufficient 

to meet what is targeted on the path at year t. Consider 

replacing some units in Fbt and/or adding certain new 

units of the considered models. Find the combination of 

used units to replace and new units to add, so that the 

resulting fleet, Ft, has a capacity of Qft, which gives a 

cumulative waste of Wft, with the minimum non-negative 

bias (Wft−Wt). This combination may indicate only 

replacing certain used units, or only adding a certain 

number of new units of certain models, or both. The 

algorithm of finding such a combination is trivial and  

not described. The replaced old units (if any) are 

salvaged. 

For t=1, two initial conditions can be handled. One 
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is with a preexisting fleet, F0, in which case F0 is the 

base fleet, Fb1, for the 1st year and the fleet fitting logic 

is exactly the same as that described above. The other is 

with no preexisting fleet, in which case the fleet fitting 

logic starts with Case 3 above and fits a fleet of all new 

units for the 1st year. 

For the final L years, the condition WfL=WL must be 

strictly met, that is, the total waste actually removed by 

the fitted fleets, WfL, must be equal to the total waste in 

the ultimate pit, WL. This condition is rarely met due to 

the integer nature of equipment units and the assumption 

of full utilization. When the condition is not met, the 

fleet, FL, fitted for the final year is assumed to work a 

fraction of a whole year at its full capacity. 

After a fleet is fitted for each year on a path, the 

calculation of PVC of the path is a straightforward matter 

and the equations are omitted. 

 

4 Numerical example 
 

A software package has been developed for the 

algorithm and applied to a numerical example to test the 

algorithm. A deposit model from a real open pit iron 

mine is taken to generate the required waste removal 

quantity. The mine has a processing plant with a 

throughput of 4 Mt per year which is also the planned 

annual ore production from the pit. The minimum 

working bench width is 40 m with a bench height of   

15 m and a bank slope of 60°, which gives the maximum 

working slope of 17°. The ultimate pit is first optimized, 

within which a series of maximum-working-slope 

pushbacks are then generated with an ore increment of 

200 kt. These pushbacks are then sequenced to obtain the 

required waste removal quantity in each year to meet the 

4 Mt of annual ore production. The mine life is 17 years 

and the annual ore production, the required annual and 

cumulative waste removals are listed in columns 2 to 4 in 

Table 1. 

The objective is to optimize the waste removal 

through truck fleet scheduling. Since the tonnage that can 

be hauled by a truck in a given time period, with its 

given payload and working efficiency, is a function of 

the travel distance, the effective capacity of a truck is 

commonly expressed in terms of haulage work done per 

year. Therefore, the required annual and cumulative 

waste removal tonnages are converted into haulage work 

as shown in the last two columns of Table 1. The waste 

haulage distance is assumed to vary from 3.0 to 4.2 km 

as the pit deepens. A piece-wise linear interpolation is 

used to do the conversion. 

Three truck models are considered for this example 

with respective payloads of 60 t, 100 t and 154 t, denoted 

respectively as model M60, M100 and M154. Attempts 

were made to collect data on the effective capacities and 

operating costs of the trucks as functions of their ages. 

But the data are not in enough detail and do not cover 

sufficient time length to construct complete capacity and 

cost profiles. Therefore, the effective capacity and 

operating cost of each truck model were made up as 

discrete functions of age as given in Table 2, based on 

 

Table 1 Required waste removal and haulage work 

Year/ 

a 

Annual ore 

production/(Mt·a−1) 

Required annual 

waste removal/(Mt·a−1) 

Required cumulative 

waste removal/Mt 

Required annual waste 

haulage work/(Mt·km·a−1) 

Required cumulative waste 

haulage work/(Mt·km) 

1 4.000 5.340 5.340 16.126 16.126 

2 4.000 6.779 12.119 20.789 36.915 

3 4.000 8.742 20.861 27.334 64.249 

4 4.000 11.357 32.218 36.393 100.642 

5 4.000 9.099 41.317 29.877 130.519 

6 4.000 9.173 50.490 30.768 161.287 

7 4.000 10.152 60.642 34.811 196.098 

8 4.000 11.032 71.674 38.732 234.830 

9 4.000 14.252 85.926 51.430 286.260 

10 4.000 20.467 106.393 76.606 362.866 

11 4.000 9.940 116.333 38.373 401.239 

12 4.000 8.382 124.715 32.952 434.191 

13 4.000 8.311 133.025 33.210 467.401 

14 4.000 7.688 140.714 31.196 498.597 

15 4.000 6.407 147.121 26.347 524.944 

16 4.000 5.293 152.414 22.005 546.949 

17 2.621 2.953 155.367 12.371 559.320 
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Table 2 Capacity and cost for three truck models used in example 

Age/ 

a 

M60 

Purchase price: RMB 4.5×106 Yuan 
 

M100 

Purchase price: RMB 8.0×106 Yuan 
 

M154 

Purchase price: RMB 14.0×106 Yuan 

Effective 

capacity/ 

(Mt·km·a−1) 

Operating 

cost/ 

(RMB 106 

Yuan·a−1) 

Salvage 

value/ 

RMB 106 

Yuan 

 

Effective 

capacity 

/(Mt·km·a−1) 

Operating 

cost/ 

(RMB 106 

Yuan·a−1) 

Salvage 

value/ 

RMB 106 

Yuan 

 

Effective 

capacity/ 

(Mt·km·a−1) 

Operating 

cost/ 

(RMB 106 

Yuan·a−1) 

Salvage 

value/ 

RMB 106 

Yuan 

0 1.60 3.36   3.00 5.85   4.50 8.10  

1 1.57 3.45 2.93  2.94 6.01 5.20  4.40 8.17 9.10 

2 1.51 3.47 2.03  2.84 6.03 3.60  4.26 8.36 6.30 

3 1.46 3.50 1.35  2.74 6.10 2.40  4.12 8.52 4.20 

4 1.38 3.62 0.67  2.61 6.37 1.20  3.88 8.65 2.10 

5 1.28 3.75 0.22  2.42 6.75 0.40  3.64 8.84 0.70 

6 1.19 4.38 0.00  2.26 7.18 0.00  3.40 9.18 0.00 

7 1.11 4.76 0.00  2.10 7.69 0.00  3.21 9.53 0.00 

8 1.02 5.04 0.00  1.94 8.19 0.00  3.02 10.31 0.00 

9 0.94 5.31 0.00  1.81 8.70 0.00  2.82 11.03 0.00 

10 0.85 5.36 0.00  1.68 8.83 0.00  2.59 11.63 0.00 

11     1.58 8.94 0.00  2.44 12.09 0.00 

12     1.52 9.17 0.00  2.35 12.67 0.00 

13         2.25 13.57 0.00 

14         2.20 14.47 0.00 

15         2.11 15.17 0.00 

 

analyses on the collected data. The maximum service 

lives of M60, M100 and M154 are assumed to be 10, 12, 

and 15 years, respectively. The salvage values are based 

on an assumed 5 years depreciation schedule, in which 

the salvage values of a truck are equal to 65%, 45%, 30%, 

15% and 5% of a new truck’s purchase price, after it has 

worked for 1 to 5 years, respectively. The new truck 

purchase prices are also given in Table 2. 

Theoretically, any truck in an existing fleet should 

be considered for replacement/salvage, regardless of its 

age. Practically, however, no one is likely to consider 

replacing/salvaging a truck after it has only been in 

service for a couple of years. Therefore, a minimum 

replacement/salvage age, amr, is imposed for each model 

m in the fleet fitting process, to reduce the number of 

combinations to be evaluated. Two kinds of economic 

life for a truck model m, referred to as the static 

economic life and dynamic economic life and denoted by 

lms and lmd, respectively, may be considered for amr. The 

static economic life of a truck is defined as the life over 

which the average cost is minimum, and the dynamic 

economic life is the life over which the average 

discounted cost is minimum. Capital cost, operating costs 

and salvage value are all included in calculating the 

average (discounted) cost. Using the data in Table 2, the 

lms values for models M60, M100, and M154 are 4, 4 and 

5 years, respectively. For a discount rate of 8% and a cost 

escalation rate of 2%, the lmd values for the three models 

are 7, 7 and 9 years, respectively. 

The minimum replacement/salvage age, amr, for 

each model can also be user defined. Trial runs of the 

algorithm on different amr values indicated that, in the 

best schedules, trucks are rarely replaced/salvaged at a 

age beyond the range [lms, lmd]. Therefore, amr is set to lms 

for each truck model in this example. 

A domain reduction factor, p, is used in the 

algorithm to define an initial search domain. Because 

minimizing PVC always tries to postpone waste  

removal as much as possible, it can be reasoned that the 

optimal schedule would most likely lie in the lower half 

of the solution domain in Fig. 3 in most cases. Therefore, 

p=0.5 is used for this example. Note that a p value of  

0.5 does not mean that all the searching will be 

constrained in the lower half of the solution domain, 

because the neighborhood search domain may go above 

this limit. 

A series of δ values (neighborhood increments) are 

used in the algorithm to define neighborhood search 

domains. Good δ values are the capacity increase if used 

trucks were replaced at their corresponding minimum 

replacement/salvage ages, and the capacities of new 

trucks of the considered models. In this example, four δ 

values 1.60, 0.86, 0.39 and 0.22 are used, where 1.60 is 

the capacity of a new truck of model M60; and 0.86, 0.39 
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and 0.22 correspond to the capacity increase for M154, 

M100 and M60 if replacement occurred at their 

corresponding minimum replacement/salvage ages of 5, 

4 and 4 years, respectively. 

The search density, nρ, defines the number of search 

points to be considered in the search domain for each 

year. Clearly, the larger the nρ value is, the closer the 

resulting schedule should be to the unknown optimal. 

However, the number of schedules to be evaluated 

explodes with increasing nρ. In this example, nρ=3 is 

used. 

To make the case general, a preexisting fleet of 7 

trucks is assumed as given in Table 3. A discount rate of 

8% and a cost escalation rate of 2% are used for PVC 

calculations. 

 

Table 3 Preexisting truck fleet 

Model Age/a Number 

M60 

2 2 

7 1 

4 2 

M100 2 1 

M154 4 1 

 

Applying the above input data, the algorithm 

evaluated 1583540 paths, and the optimized schedule   

is shown in Fig. 4, which has a PVC of 
 

RMB 

942.68×10
6 

Yuan. When fleets are fitted with the same 

fleet-fitting logic for the remove-as-required and 

constant-removal scenarios, their PVCs are RMB 

987.33×10
6 

Yuan and RMB 1076.86×10
6 

Yuan, 

respectively. 

 

 

Fig. 4 Optimized waste haulage work schedule for example 

 

The fleet profile and the waste haulage work done 

in each year in the optimized schedule are depicted in 

Fig. 5. From this figure, one can see the evolution of the 

truck fleet over time: the number of trucks and the model 

and age of each truck in the fleet for each year; the 

purchase and salvage/replacement time as well as the 

service time length of each truck. Two M60 trucks, 4 and 

7 years old, in the preexisting fleet are replaced 

immediately at the beginning. All the trucks are 

salvaged/replaced before reaching their corresponding 

dynamic economic lives. Most of the trucks selected for 

the schedule is model M154. This is expected because, of 

the three models, M154 gives the lowest discounted 

capital and operating cost, when the service time length 

of each model is in the range [lms, lmd]. The peak annual 

haulage work in the optimized schedule is 60.7 Mt·km 

(see Qft values in Fig. 5), while the required peak is 

76.606 Mt·km/a (see Table 1). 

 

 

Fig. 5 Truck fleet and waste haulage work scheduled for numerical example 
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5 Conclusions 
 

1) The algorithm provides not only a waste removal 

schedule, but also a detailed evolution of the equipment 

fleet profile over the mine life. 

2) Different equipment model mixes can be 

evaluated using the algorithm to select the most 

appropriate ones for a given mine, making the algorithm 

a useful tool for both waste removal planning and 

equipment selection. 

3) Although the equipment considered in the 

numerical example is trucks, loaders and drills can also 

be scheduled. When same equipment models are used for 

both waste removal and ore mining, the algorithm can do 

the entire production scheduling by summing up the ore 

mining work and required waste removal work in each 

year. 

4) The algorithm currently does not consider 

equipment overhaul and the option of keeping idle 

equipment units when not needed temporarily. Using the 

current algorithm, truck and loader fleets can only be 

scheduled separately by independent runs. Trucks and 

loaders always work together and should be scheduled 

together with the consideration of appropriate matching 

between them. The execution time for the example case 

is 48 min. When the mine life is long, it may take an 

unacceptably long time to complete a run. Hence, there is 

a need to raise the algorithm’s efficiency. These are the 

issues being addressed to make the algorithm more 

realistic and powerful. 
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通过设备配置优化露天矿剥离计划 
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摘  要：给出了一个临近域搜索算法来同时优化露天矿开采寿命期的剥岩计划和设备配置计划。首先定义一个初

始搜索域并在其中搜索到一个好的计划作为当前最佳计划。然后，在当前最佳计划的周围构建逐步变窄的临近搜

索域，以搜索更好的计划。优化目标是使矿山寿命期的剥离成本的现值达到最小。对于矿山寿命期的每一年，由

该算法求得的计划给出了完整的设备配置方案：所选择的设备型号、每种型号设备的台数、每台设备的役龄，以

及剥离的废石量。以一个应用算例展示了该算法的可行性和优点。 

关键词：露天矿；剥岩；设备配置；计划；临近域搜索 
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