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Abstract: Following Bessembinder and Seguins, trading volume is separated into expected and unexpected components. Meanwhile, 
realized volatility is divided into continuous and discontinuous jump components. We make the empirical research to investigate the 
relationship between trading volume components and various realized volatility using 1 min high frequency data of Shanghai copper 
and aluminum futures. Moreover, the asymmetry of volatility−volume relationship is investigated. The results show that there is 
strong positive correlation between volatility and trading volume when realized volatility and its continuous component are 
considered. The relationship between trading volume and discontinuous jump component is ambiguous. The expected and 
unexpected trading volumes have positive influence on volatility. Furthermore, the unexpected trading volume, which is caused by 
arrival of new information, has a larger influence on price volatility. The findings also show that an asymmetric volatility−volume 
relationship indeed exists, which can be interpreted by the fact that trading volume has more explanatory power in positive realized 
semi-variance than negative realized semi-variance. The influence of positive trading volume shock on volatility is larger than that of 
negative trading volume shock, which reflects strong arbitrage in Chinese copper and aluminum futures markets. 
Key words: nonferrous metals futures; volatility−volume relationship; high frequency data; trading volume; asymmetry 
                                                                                                             

 
 
1 Introduction 
 

After nearly 20 years of development, Chinese 
nonferrous metal futures market has become an 
important metal futures trading place, whose trading 
volume is second only to the London Metal Exchange 
(LME). Nonferrous metals also occupy an important 
strategic position in China’s national economy. Among 
them, copper and aluminum are called “industrial food” 
and are widely used in various fields of the national 
economy. Under the background of financialization, the 
unpredictable price of nonferrous metals has brought 
difficulties to the daily observation and policy 
formulation to government regulatory authorities, while 
the trading volume is easy to observe and can be used as 
a proxy variable for market information flow. Therefore, 
by observing the change in the volume of this dominant 
indicator, we can predict the trend of market price 
changing and avoid risks effectively. Hence, research on 

volatility−volume relationship of nonferrous metals 
futures market has become an important topic. 

Due to the noise in the market, many practical 
problems cannot be explained by traditional financial 
theory. The research on volatility−volume relationship 
provided new ideas for scholars’ research. CROUCH and 
ROBERT [1] found a positive correlation between 
trading volume and absolute return in the stock market. 
By establishing the model, CLARK [2] proved the 
positive correlation between price volatility and volume 
in financial markets, and proposed a famous theory: 
Mixture Distribution Hypothesis (MDH). COPELANG 
and ANALYSIS [3] built the continuous information 
arrival model and found that the information will 
gradually disperse after it reaches the market, causing 
changes in market prices and volume. KARPOFF and 
ANALYSIS [4] proposed that the relationship between 
volume and price involves the reaching rate, reaching 
path and the degree of communication. 

In order to find out the main driving factors behind 
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the relationship between volatility and volume, scholars 
began to analyze the quantitative relationship of 
volatility−volume from a more micro perspective.  
KYLE [5] assumed that there are three types of traders 
on the market: informed traders, market makers, and 
random flow traders. ADMATI and PFLEIDERER [6] 
proposed that there is still a fourth trader in the market 
who has certain judgment on market timing, namely 
free-flow trader. HE et al [7] investigated the effect of 
investor risk compensation (IRC) on stock market  
returns, and the results show that current IRC has a 
significant and positive effect on stock returns. 
BESSEMBINDER et al [8] decomposed volume into 
expected volume and unanticipated trading volume, and 
found that unexpected volume is the main factor leading 
to stock price fluctuations. WEN et al [9,10] found that 
investors’ risk preference characteristics play a 
significant role in stock market prices. CHENG et al [11] 
showed that long memory feature with a certain period 
exists in volatility−volume correlation. KARAA et al [12] 
investigated the impact of trading intensity and trading 
volume on return volatility by using transaction data 
from the Tunis Stock Exchange. MAGKONIS and 
TSOUKNIDIS [13] examined the existence of dynamic 
spillover effects across petroleum spot and futures 
volatilities, trading volume and open interest. With the 
development of computer technology and the degree of 
informatization, the realized volatility based on high 
frequency data is applied to the empirical study of 
volatility−volume relationship. CHAN and FONG [14] 
used realized volatility obtained by summing up intraday 
squared returns to confirm that number of trades is the 
dominant factor behind the volatility−volume relation. 
Besides, using high-frequency data, WEN et al [15] and 
GONG et al [16] applied the realized volatility to 
forecast the volatility and investigate the risk−return 
trade-off for crude oil futures. In view of the nonferrous 
metal futures market, some scholars have adopted 
different methods to study the volatility prediction and 
leverage effects of the nonferrous metal futures market 
based on high-frequency data [17−19]. However, they 
didn’t do further exploring on the relationship between 
the decomposition of realized volatility and volume from 
a more microscopic perspective. ANDERSEN et al [20] 
separated the continuous sample path variance and the 
jump variance of the realized volatility based on the 
quadratic variation theory. Based on this research, some 
scholars conducted empirical studies on the correlation 
among continuous fluctuation components, jump 
components and volume [21]. Followed by the research 
foundation of GIOT et al [22], CHEVALLIER and  
SÉVI [23] explored the asymmetry of the relationship 
between volume and price in the energy futures market. 
SLIM and DAHMENE [24] decomposed the transaction 

volume into informed trading volume and liquidity 
trading volume, and further explored the correlation 
between the decomposition of the CAC40 stock volume 
and the decomposition of the volatility of Paris Stock 
Exchange, but did not continue to explore whether there 
is asymmetry in the volatility−volume relationship of 
financial market. XIAO et al [25] used the positive and 
negative changes of the crude oil volatility index (OVX) 
and examined the asymmetric effects of uncertainty 
shocks. TODOROVA and CLEMENTS [26] found that 
both trading volume and trading frequency are highly 
relevant. However, they did not further study the 
asymmetry of volatility−volume relationship based on 
the trading volume. 

In view of the contributions and shortcomings of the 
above literature research, this work decomposes the 
trading volume into the predictable and unpredictable 
parts, and decomposes the high-frequency realized 
volatility into continuous volatility and jumps. Further, 
the relationship between the decompositions of volume 
of Chinese copper and aluminum futures market and the 
decompositions of realized volatility is studied. 
Moreover, the asymmetry of volatility−volume 
relationship in Chinese copper and aluminum futures 
market was explored. 

The main innovations of this work are as follows: 
firstly, the research on commodity futures, especially the 
nonferrous metal futures market, is very rare in the 
existing research, while nonferrous metals like copper 
and aluminum have a vital position in China’s industrial 
structure and national economy. Secondly, most of the 
research on volatility−volume relationship was focused 
on correlation test and causal analysis, but this work 
further decomposes the trading volume into the expected 
volume and the unexpected volume, and discusses the 
relationship between price volatility and volume from the 
market microstructure. Thirdly, existing literature is 
mostly based on daily data instead of high frequency  
data, while AVRAMOV et al [27] found that the research 
based on high frequency data can significantly improve 
the explanatory ability of the model. Finally, this work 
further explores the asymmetry of the volatility−volume 
relationship in Chinese copper and aluminum futures 
market. 
 
2 Methodology 
 
2.1 Volatility estimation 
2.1.1 Realized volatility 

ANDERSEN and BOLLERSLEV [28] proposed the 
realized volatility for measuring the return volatility in 
the financial market. For a given day t, the daily realized 
volatility can be computed as 
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where rt,i is the ith return (i=1, …, M) at the given day t, 
i.e., rt,i=100(lg Pt,i−lg Pt,i−1), and Pt,i is the ith closing 
price at the given day t. 
2.1.2 Jump and continuous variations 

We assume that the logarithmic price of copper and 
aluminum futures (pt=lg Pt) within the trading day 
follows a general stochastic volatility jump diffusion 
model: 
 
d = d + d + d , 0t t t t t tp t W q t T                    (2) 
 
where μt is the drift term with a continuous variation 
sample path; σt denotes a strictly positive stochastic 
volatility process; Wt is the driving standard Brownian 
motion; κtdqt denotes the random jump size. 

For discrete prices process, the return volatility at 
the given day t includes jump variation, so it is not an 
unbiased estimator of integrated volatility. The return 
volatility at the given day t is measured by the quadratic 
variation: 
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When M→∞, the daily realized volatility d
t can be 

used as a consistent estimator of quadratic variation τt: 
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Following BARNDORFF et al [29,30], the 
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where 1 ( ) π/2tz E Z  , and Zt is a random variable 

which drives a standard normal distribution. Following 

BARNDORFF et al [29,30] and HUANG and 

TAUCHEN [31], Z-statistics is used to identify the 

discontinuous jump variation: 
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where 1 2/π  , and ωt denotes the realized tri-power 

quarticity, 
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Based on the above jump detection test statistic, we 
obtain the daily discontinuous jump variation Jt:  

( )( )t t t tJ I Z                             (7) 
 
and the daily continuous sample path variation Ct: 
 

( ) ( )t t t t tC I Z RV I Z                     (8) 
 
where I is the indicator function and Φα refers to the 
critical value from the standardized normal distribution. 
Following GONG et al [16] and ANDERSEN et al [32], 
we use a critical value of α=0.99. 
2.1.3 Realized semi-variances 

BARNDORFF et al [33] developed the daily 
realized semi-variances which can capture the variation 
only according to negative or positive return in intraday 
trading. The daily positive realized semi-variance 
estimator is defined as 
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And the daily negative realized semi-variance 

estimator is written as 
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2.2 Analysis of volatility−volume relationship 

Considering the complexity of price volatility in the 
futures market, regression models are established from 
three different aspects: the basic volatility−volume 
relationship, the volatility−volume relationship with 
volume decomposition, and the asymmetric volatility− 
volume relationship. Further, comprehensive survey of 
price volatility in Chinese copper and aluminum futures 
market is conducted. 
2.2.1 Basic volatility−volume relationship model 

The basic volatility−volume relationship model 
mainly discusses the relationship of volatility and its 
decomposition part with trading volume. First, referring 
to the Realized Bipower Variation proposed by 
BARNDORFF and SHEPHARD [29], the realized 
volatility is decomposed into the continuous part and the 
jumping part, and further the week dummy variable is 
introduced to discuss the “week effect” of new 
information release on the price volatility of nonferrous 
metal futures. At the same time, emulating the modeling 
methods of GIOT et al [22], CHEVALLIER and    
SÉVI [23] and SLIM and DAHMENE [24], we select  
the continuous lag of 12 orders to eliminate the 
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autocorrelation of realized volatility and the continuous 
part. The basic volatility−volume relationship model is 
as follows: 
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where ςi,t is the realized volatility of futures i on day t, 
and the realized volatility is defined as the sum of the 
squares of intraday high-frequency gains. Ci,t and Ji,t  
are the continuous variation and jump variation based on 
the realized double power variation (RBV) 
decomposition, respectively. Vi,t is the trading volume; 
DUMMYi,t is the intra-week dummy variable that takes 
into account the impact of new information released in 
the copper and aluminum futures market. In this work, 
the dummy variable of Wednesday is used, and εi,t 
represents the random error term. 
2.2.2 Volatility−volume relationship model with volume 

decomposition 
In this section, we mainly discuss the impact of 

expected trading volume (non-information volume) and 
unexpected trading volume due to arrival of new 
information on price volatility. It is known from existing 
research that foreign information can cause financial 
asset price volatility, which is based on certain 
assumptions: investors cannot predict future information. 
It can be seen that the expected trading volume and the 
unexpected trading volume have different effects on 
price volatility. Therefore, it is necessary to decompose 
the volume and explore the relationship between the 
trading volume decompositions and price volatility from 
a more microscopic perspective. 

After the logarithm of the trading volume data of 
copper and aluminum futures, the autocorrelation test is 
carried out. It can be found that there is a high 
autocorrelation between the trading volume sequences of 
the two metal futures. In order to eliminate the 
autocorrelation of sequences, the regression of trading 
volume sequences is conducted by using the 
autoregressive moving average model ARMA(p,q): 
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The expected trading volume is the fitting value 

calculated by model ARMA(p,q), denoted as E
,i tV . The 

unexpected trading volume is the value of the volume 
after eliminating the sequence correlation, that is, the 
estimated value of the regression residual. It is also the 
difference between the actual value and the fitting value, 

denoted as U
,i tV . Selection of lag order in model 

ARMA(p,q) is based on AIC criterion and SC criterion. 
The expected and unexpected trading volumes were 
introduced into the basic model as explanatory variables, 
and the following formula can be obtained: 
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where E

,i tV  and U
,i tV  respectively represent the expected 

trading volume and unexpected trading volume for future 
i in the day t. 
 
2.3 Asymmetric volatility−volume relationship model 

The asymmetric relationship between trading 
volume and price volatility in Chinese copper and 
aluminum futures market is further discussed. The effects 
of trading volume on positive and negative realized 
semi-variances, and the different impact of positive and 
negative trading volume on price volatility are discussed. 

From the perspective of realized volatility, the 
impact of upside (positive) and downside (negative) risks 
of prices on investors’ trading strategies was studied. 
BARNDORFF et al [30] proposed the concepts of daily 
positive realized semi-variance ( )tRS and daily 
negative realized semi-variance ( )tRS   for realized 
volatility. CHEVALLIER and SÉVI [23] applied the 
daily positive and negative realized semi-variances to the 
asymmetric study of the relationship between price 
volatility and volume. With reference to their research 
results, the following model is constructed in this work: 
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daily positive and negative realized semi-variances, 
respectively. 
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From the perspective of trading volume, the 

different impact of positive and negative unexpected 
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trading volume on the price volatility of futures market is 
studied. Based on the volume decompositions, a positive 
unexpected trading volume U

,i tV  is introduced, and the 
following model is constructed: 
 

12
E

, , , , 1 ,
1

i t i i i t i j i t j i i t
j

DUMMY V     


      

U U
, 2 , ,i i t i i t i tV V                         (19) 

 
where the unexpected trading volume U

tV >0, β2i=1; or 
β2i=0. 

In order to eliminate the possible autocorrelation or 
heteroscedasticity of the model estimation results, OLS 
with Newey West estimation method is used to estimate 
the parameters in all the empirical models except the 
jump volatility, and TOBIT regression is adopted to 
estimate the jump volatility with reference to GIOT    
et al [22]. 
 
3 Empirical analysis 
 

Two most typical nonferrous metal futures in China 
are taken as study objects: copper futures and aluminum 

futures, and the 1 min closing prices of copper and 
aluminum futures due in three months in Shanghai 
futures exchange are selected, whose trading volume of 
copper and aluminum futures is the largest in China. The 
sample interval is selected from July 1, 2010 to July 1, 
2015 (excluding holidays, a total of 1214 trading days). 
The trading hours are 8:59 to 11:29 a.m. and 13:30 to 
15:00 p.m., a total of 227 intervals per day, namely 
M=227. The selected sample indexes are trading time, 
closing price, opening price and trading volume, all of 
which are from CSMAR database (http://www.gtarsc. 
com/) [34]. The data processing software is 
MATLAB2017a and STATA14.0. Sample data selection, 
descriptive statistics and empirical results are then 
analyzed. 

Based on Section 2, the daily return rt, realized 
volatility RVt and its continuous variation Ct and jump 
variation Jt are calculated. In order to better analyze the 
characteristics of different components that make up the 
total daily return variation for copper and aluminum 
futures markets, Figs. 1 and 2 are plotted. The figures 
clearly illustrate that for copper or aluminum futures,  

 

 
Fig. 1 Realized volatility (a), trading volume (b), continuous (c) and discontinuous jump (d) components of copper futures from July 

1, 2010 to July 1, 2015 
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Fig. 2 Realized volatility (a), trading volume (b), continuous (c) and discontinuous jump (d) components of aluminum futures from 

July 1, 2010 to July 1, 2015 

 

each component exhibits volatility clustering, which 
indicates rather distinct dynamic dependence in each of 
the different components. 
 
3.1 Descriptive statistics of sample data 

Descriptive statistics of various indicators for 
copper and aluminum futures are recorded in Table 1 and 
Table 2. The skewness and kurtosis of the volatility and 
decomposition sequence of copper and aluminum futures 
show that the price volatility has a significant peak and 
tail. Except the jump part and the unexpected volume of 
aluminum futures, each statistic has a high degree of 
autocorrelation with a lag of 12 orders. Besides, the 
results of ADF unit root test prove that all indicators are 
stationary. Specifically, the proportion of continuous 
component of realized volatility in copper and aluminum 
futures is larger than that of the jump component 
(continuous components account for 88.5% and 70.6% 
for copper and aluminum futures, respectively), 

indicating that the continuous component in the realized 
volatility occupies the dominant position, while the 
effect of the jump component is relatively small. In 
addition, the mean of the daily positive and negative 
realized semi-variances ( tRS and tRS  ) is nearly the 
half of the realized volatility, and the mean of negative 
realized semi-variance is greater than the mean of 
positive realized semi-variance. This indicates that the 
risk of price decline in the copper and aluminum futures 
market is higher than the risk of price rise. It is also 
indirectly reflected that the trading strategies of investors 
in the two markets tend to short-selling, and they are 
relatively cautious about the long market. 

 
3.2 Empirical results and analysis 

Based on the descriptive and correlation analysis of 
various indicators, the relevant data of the copper and 
aluminum futures market are used to demonstrate the 
model. Only the parameter estimation results of main  
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Table 1 Descriptive statistical analysis of various indicators for copper futures in China 

Indicator Mean Std. Dev. Skewness Kurtosis Q(12) ADF-t Obs. 

RV 0.6974 0.8533 5.2383 42.198 2444.5*** −18.088*** 1214 

C 0.6173 0.6843 4.1569 27.668 3658.9*** −13.948*** 1214 

J 0.0802 0.3327 16.498 356.113 32.765*** −32.841*** 1214 

RS+ 0.3463 0.3962 4.1025 26.299 2660.5*** −17.298 *** 1214 

RS− 0.3511 0.5180 7.6943 85.953 1412.3*** −21.866*** 1214 

V 11.8994 0.9233 −0.5150 2.9653 2402*** −10.857*** 1214 

V E 11.9030 0.7619 −0.5164 2.9814 2795.5*** −10.327*** 1214 

V U −0.0036 0.5234 0.2105 11.483 40.129*** −35.663*** 1214 
*** represents significant at 1% significance level 

 

Table 2 Descriptive statistical analysis of various indicators for aluminum futures in China 

Indicator Mean Std. Dev. Skewness Kurtosis Q(12) ADF-t Obs.

RV 0.3126 0.6619 12.816 234.215 240.42*** −21.703 *** 1214

C 0.2207 0.5133 11.679 194.185 397.25 *** −19.622 *** 1214

J 0.0918 0.2102 16.781 347.910 8.2273 −23.000 *** 1214

RS+ 0.1512 0.2681 7.6117 77.4900 540.13 *** −17.481 *** 1214

RS− 0.1614 0.4332 17.500 410.206 84.722 *** −25.015 *** 1214

V 9.6920 0.9446 0.5825 3.2843 3022.5 *** −8.822 *** 1214

V E 9.6964 0.8068 0.5787 3.0517 3968.2*** −6.489 *** 1214

V U −0.0044 0.4912 0.0223 4.8697 4.335 −33.430 *** 1214
*** represents significant at 1% significance level 

 

variables are listed here, and the analysis is carried out 
based on the reality of the nonferrous metal futures 
market. 
3.2.1 Basic volatility−volume relationship model 

Tables 3 and 4 show the estimation results for the 
basic volatility−volume relationship model of copper and 
aluminum futures. 

Considering that the volatility−volume relationship 
model of jump variation uses the TOBIT regression 
method, the value of its goodness of fit is meaningless, 
so it is represented by NA. The results of Table 3 show 
that the trading volume of copper futures market has a 
positive impact on the realized volatility and the 
continuous volatility, and the impact is significant at the 
significance level of 1%. Similar results exist in the 
aluminum futures market (see Table 4). This indicates 
that the price volatility of copper and aluminum futures 
increase with the increase of trading volume, and slow 
down with the decrease of trading volume. This means 
that both the “volatility and volume rise together” and 
“volatility and volume fall together” exist in the two 
futures markets of copper and aluminum. The dummy 
variable of Wednesday, which represents the new 
information released during the week, has significant 
influence on the realized volatility and continuous 
volatility of copper and aluminum futures markets, and 
all coefficients are negative (the RV and C coefficients 

for copper futures are −0.105 and −0.0528, respectively, 
and for the aluminum futures coefficients are −0.0554 
and −0.0385, respectively). It is shown that realized 
volatility and its continuous component in the copper and 
aluminum futures are obviously negatively affected by 
the week effect. That is to say, the week effect has a 
certain “absorption” effect on the price volatility and its 
continuous component of the copper and aluminum 
futures markets. At the same time, the corresponding 
parameters of the dummy variables on the jump volatility 
are not significant, indicating that the week effect has no 
significant effect on the jumps. The performances of the 
impact on trading volume for the jump variations are 
different between the copper and aluminum futures 
market. In the copper futures market, the trading volume 
has no significant impact on the jump variation, but has a 
significant impact on the aluminum futures market. In 
Table 3 and Table 4, the adjusted R2 of the continuous 
variation is higher than that of the realized volatility, 
indicating that after removing the jump variation, the 
adjustment and goodness of the basic volatility−volume 
relationship model are significantly improved, which 
reflects the volatility−volume relationship in copper and 
aluminum futures is affected by the noise caused by the 
jump component of volatility. 
3.2.2 Volatility−volume relationship model with volume 

decomposition 
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Table 5 and Table 6 show the estimation results of 
the volatility−volume relationship model with volume 
decomposition. It can be seen from Table 5 that the 
unexpected trading volume has a significant positive 
influence (at the 1% significance level) on realized 
volatility and its continuous part, while the coefficient 
corresponding to the expected volume is not significant. 
In the aluminum futures market, both the expected and 
unexpected volume have a significant positive impact on 
the realized volatility and its continuous and jump 
decompositions (at the 1% significance level). In 
addition, the coefficient of unexpected volume is greater 
than that of expected volume (0.326>0.190 for realized 
volatility, 0.262>0.141 for continuous volatility, and 
0.052>0.023 for jump volatility). It can be concluded 
that the impact of unexpected trading volume on 
volatility in the copper and aluminum metal futures 
market is greater than that of expected trading volume on 
volatility. The unexpected trading volume represents the 
information volume caused by the newly arrived market 
information, while the expected trading volume 
represents the non-information volume caused by the 

market development, investor position adjustment or 
liquidity demand. This indicates that non-information 
trading volume has less driving force for price volatility 
in copper and aluminum futures market, and investors 
will refer to the information of new arrival in the market 
when making investment strategies more, which is 
consistent with the conclusion of BESSEMBINDER    
et al [8]. The parameters of dummy variables 
representing the week effect for the realized volatility, 
and its continuous component are significant and 
negative for copper and aluminum futures market. This 
suggests that the copper and aluminum futures markets 
are negatively affected by the week effect. In addition, 
from the perspective of adjusted R2, after removing the 
jump volatility, the adjusted goodness of fit of 
volatility−volume relationship model based on the 
volume decomposition is also significantly improved. 
3.2.3 Asymmetric volatility−volume relationship model 

The asymmetric volatility−volume relationship 
model is mainly manifested in the asymmetry of the 
realized volatility and the asymmetry of trading volume. 
The estimated results are given in Table 7 and Table 8. 

 
Table 3 Estimation results of basic volatility−volume relationship model for Chinese copper futures 

Variable RV C J 

V 0.0967*** (0.0249) 0.0874*** (0.0191) −0.0257 (0.0198) 

Dummy −0.105*** (0.0357) −0.0528* (0.0275) −0.0610 (0.0468) 

Adjusted R2 0.4677 0.5969 NA 
Values in parentheses are standard deviations; ***, ** and * indicate being significant at 1%, 5% and 10% significance levels, respectively  
 
Table 4 Estimation results of basic volatility−volume relationship model for Chinese aluminum futures 

Variable RV C J 

V 0.241*** (0.0603) 0.188*** (0.0461) 0.031*** (0.00689) 

Dummy −0.0554** (0.0232) −0.0385** (0.0161) −0.0127 (0.01597) 

Adjusted R2 0.2339 0.3012 NA 
Values in parentheses are standard deviations; ***, ** and * indicate being significant at 1%, 5% and 10% significance levels, respectively 
 
Table 5 Estimation results of volatility−volume relationship model with volume decomposition for copper futures 

Variable RV C J 

V E 0.0320 (0.0220) 0.0183 (0.0156) −0.0403* (0.0241) 

V U 0.226*** (0.0451) 0.223*** (0.0362) 0.0049 (0.0348) 

Dummy −0.106*** (0.0353) −0.0543** (0.0268) −0.0621 (0.0468) 

Adjusted R2 0.4771 0.6129 NA 
Values in parentheses are standard deviations; ***, ** and * indicate being significant at 1%, 5% and 10% significance levels, respectively 

 

Table 6 Estimation results of volatility−volume relationship model with volume decomposition for aluminum futures 

Variable RV C J 

V E 0.190*** (0.0697) 0.141*** (0.0527) 0.023*** (0.0081) 

V U 0.326*** (0.0655) 0.262*** (0.0500) 0.052*** (0.0131) 

Dummy −0.0553** (0.0235) −0.0385** (0.0164) −0.0126 (0.01596) 

Adjusted R2 0.2400 0.3092 NA 
Values in parentheses are standard deviations; ***, ** and * indicate being significant at 1%, 5% and 10% significance levels, respectively 
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Table 7 Estimation results for asymmetric volatility−volume relationship model of aluminum futures in China 

Variable RS+ RS− RV 

V E 0.0162 (0.0113) 0.0253* (0.0144) 0.0419* (0.0237) 

V U 0.112*** (0.0211) 0.119*** (0.0270) 0.124*** (0.0388) 

V U+   0.203* (0.114) 

Dummy −0.0328 (0.0206) −0.0660*** (0.0222) −0.105*** (0.0355) 

Adjusted R2 0.4868 0.3533 0.4792 
Values in parentheses are standard deviations; ***, ** and * indicate being significant at 1%, 5% and 10% significance levels, respectively 

 

Table 8 Estimation results for asymmetric volatility−volume relationship model of copper futures in China 

Variable RS+ RS− RV 

V E 0.0617*** (0.0166) 0.130*** (0.0456) 0.185*** (0.0675) 

V U 0.156*** (0.0294) 0.170*** (0.0379) 0.0176 (0.0310) 

V U+   0.593*** (0.145) 

Dummy −0.0210** (0.00966) −0.0330** (0.0162) −0.0498** (0.0232) 

Adjusted R2 0.3770 0.1435 0.2608 

Values in parentheses are standard deviations; ***, ** and * indicate being significant at 1%, 5% and 10% significance levels, respectively 

 

First, the asymmetry of realized volatility is 
considered. As shown in Table 7, the expected trading 
volume of copper futures market has no significant 
impact on the positive realized semi-variances, and has a 
significant positive impact on the negative realized 
semi-variances (at the 10% significance level). The 
unexpected trading volume has a significant positive 
effect on the positive and negative realized 
semi-variances (under the significance level of 1%), but 
the corresponding coefficient of the negative realized 
semi-variance (0.119) is larger than that of the positive 
realized semi-variance (0.112). In the aluminum futures 
market, both the expected and unexpected trading 
volumes have significant positive effects on the positive 
and negative realized semi-variances (at the significance 
level of 1%), and the corresponding coefficients of the 
negative realized semi-variances are greater than those of 
the positive realized semi-variances (expected volume: 
0.130>0.0617; unexpected volume: 0.170>0.156). It can 
be concluded that in the copper and aluminum futures 
markets in China, the impact of volume decomposition 
on the negative realized semi-variance is greater than 
that of the positive realized semi-variance. This indicates 
that when the price volatility in the market is negative, 
the price volatility caused by the trading volume change 
is larger. However, looking at the adjusted R2 
corresponding to Table 7 and Table 8, the adjusted R2 of 
positive realized semi-variances for the volatility− 
volume relationship model are significantly greater than 
that of negative realized semi-variances for the 
volatility−volume relationship model (0.4868>0.3533 for 
copper futures and 0.3370>0.1435 for aluminum  
futures). It is indicated that the volume decomposition 

has stronger interpretation ability for the positive realized 
semi-variance, and it is also indirectly indicated that the 
positive realized semi-variance contains more 
volatility−volume relationship information than the 
negative realized semi-variance. This is contrary to the 
research conclusions of POTTON and SHEPPARD [35]. 

Secondly, the asymmetry of trading volume is 
considered. Since the above-mentioned unexpected 
volume has a greater impact on the price volatility of the 
futures market, the unexpected trading volume is 
selected to perform the positive and negative impact test, 
and the dummy variable β2i is introduced into the 
parameter estimation. When the unexpected trading 
volume is positive, β2i=1, otherwise β2i=0. It can be seen 
from Table 7 that the dummy variable coefficient 
corresponding to the positive unexpected trading volume 
is significantly positive (at the significance level of 10%) 
in the copper futures market, and is greater than the 
corresponding coefficient of the unexpected trading 
volume and the expected trading volume (0.203> 
0.124>0.0419). In the aluminum futures market, the 
dummy variable coefficient corresponding to the positive 
unexpected trading volume is significantly positive (at 
the significance level of 1%), and is much larger than the 
corresponding coefficient of the expected trading volume 
(0.593>0.185) (see Table 8). It can be inferred that in 
Chinese copper and aluminum metal futures market, the 
impact of positive trading volume shock on price 
volatility is greater than that of negative trading volume 
shock on price volatility, and the impact of positive 
trading volume shock on price volatility is greater than 
that of negative trading volume shocks on price  
volatility. This shows that when the futures investors in 
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China make trading decisions, the information of the 
increasing volume is more affected than the information 
of the shrinking volume, that is, investors are more 
sensitive to the “good” news than the “bad” news. This 
reflects from the side that copper and aluminum metal 
futures investors are speculative in trading. 
 
4 Robustness test 
 

We use other methods to verify the robustness of the 
above-mentioned volatility−volume relationship, for 
example, using different jump test thresholds (such as at 
5% and 0.1% significance levels), using a more robust 
jump test estimator MedRV to replace RBV(υt), denoted 
as γ, or adopting different jump check thresholds for 
MedRV. In this work, the estimation results of using the 
more robust jump test estimator MedRV are given only. 

When the sampling frequency does not tend to be 
infinite (as is often the case in empirical tests), price 
volatility tends to be positive-biased, because volatility 
has the characteristics of volatility aggregation, and a 
large volatility is usually not followed by a small one. In 
order to reduce the conditional heteroscedasticity that 
may occur in the above empirical results, in this work, 
with reference to the research ideas of ANDERSEN    
et al [36], a new estimator MedRV is used as an indicator 
to measure the robust estimate of jump volatility to 
replace RV(ς), and the estimation is re-evaluated. Among 
them, 
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Accordingly, ωi,t in the Zt statistic will also be 

replaced by MedRTOi,t, denoted as δi,t: 
 

,
3π

29π 72 52 3
i t

N N

N
       

 

 
1

2
, 1 , , 1

2

(| |,| |,| |)
N

i j i j i j
j

Med r r r


 

              (21) 

 
When δi,t statistic is significant, jump volatility can 

be expressed by 
 

 1 11( ) max ( ) ( ),0t ttJ                        (22) 
 

With jump volatility, the continuous volatility part is 
easily expressed by the difference between the realized 
volatility and jump part. Based on the re-estimation, new 
estimation results are given in Table 9 and Table 10. 
From the estimation results, although there are some 
differences from the perspective of quantitative analysis, 
the qualitative result analysis is consistent with the result 
analysis obtained by using the realized bipower  
variation, so the robustness of the volatility−volume 
relationship is verified. 

 
Table 9 Estimated results of Chinese copper futures robustness test (MedRV) 

Variable 
Basic model Volume decomposition model 

C J C J 

V 0.0897*** (0.0228) 0.0392 (0.0273)   

V E   0.0298 (0.0202) 0.0132 (0.0327) 

V U   0.209*** (0.0436) 0.0971** (0.0487) 

Dummy −0.0541 (0.0347) −0.179*** (0.0688) −0.0553 (0.0344) −0.182*** (0.0690) 

Adjusted R2 0.4845 NA 0.4943 NA 
MedRV is only used to decompose realized volatility into continuous part and jump part, so the robustness test only involves continuous variation and jump 
variation 

 
Table 10 Estimated results of Chinese aluminum futures robustness test (MedRV) 

Variable 
Basic model Volume decomposition model 

C J C J 

V 0.240*** (0.0586) 0.00504 (0.00958)   

V E   0.197*** (0.0690) 0.00997 (0.0113) 

V U   0.310*** (0.0603) −0.00781 (0.0186) 

Dummy −0.0519** (0.0215) 0.00429 (0.0229) −0.0518** (0.0218) 0.00410 (0.0229) 

Adjusted R2 0.2114 NA 0.2159 NA 
MedRV is only used to decompose realized volatility into continuous part and jump part, so the robustness test only involves continuous variation and jump 
variation 
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5 Conclusions 
 

1) There is a clear positive correlation between the 
price volatility and the trading volume in Chinese copper 
and aluminum futures markets. Affected by the 
macroeconomic situation and the demand of market, the 
price volatility of Chinese copper and aluminum futures 
market is quite frequent, but it maintains a certain degree 
of correlation with the trading volume. Investors can 
judge the possible risks in the market by observing the 
changes in trading volume and its decomposition 
indicators. 

2) The influence degree of trading volume on 
different volatility component of copper and aluminum 
futures is different. Compared with the jump component, 
the continuous component of nonferrous metal futures 
contains more information. The correlation between 
trading volume and continuous component is closer; 
therefore, it is more accurate to predict the market 
volatility by using the continuous volatility information. 

3) The trading volume can be used as a substitute 
for market information, but the impacts of different 
volume indicators on market price volatility are different. 
The expected trading volume has a limited ability to 
interpret price volatility. However, the unexpected 
trading volume has a stronger driving effect, and can 
explain market price volatility more strongly. 

4) The impact of trading volume on price volatility 
in copper and aluminum futures markets are asymmetric. 
The positive volume shock is more influential than the 
negative volume shock, indicating that the investors are 
more sensitive to “good” news than “bad” news. 

5) The management should strengthen the 
supervision on the market, and pay more attention to the 
changes in trading volume. On one hand, regulators 
should timely predict the price volatility that may be 
caused by the trading volume changing, and on the other 
hand, investors should also be alert to the changes of 
trading volume in the nonferrous metal futures. 
Furthermore, relevant departments should strengthen the 
risk aversion mechanism to prevent the financial crisis 
and prevent systemic risks. 
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摘  要：根据 Bessembinder 和 Seguin 的研究成果，将成交量分解为可预期部分和非可预期部分，并将已实现波

动率分解为连续部分和跳跃部分。利用上海交易所铜、铝期货一分钟高频数据研究中国铜、铝期货市场成交量与

价格波动之间的关系，并进一步探究量价关系的非对称性。研究表明：中国铜、铝期货市场的已实现波动率及其

连续部分均与成交量之间存在明显的正相关关系，跳跃部分与成交量的关系不很明确。成交量的预期和非预期部

分对价格波动均有影响，但由新信息到达引起的非预期成交量对价格波动的解释能力更强。此外，中国铜、铝期

货市场的量价关系存在明显的非对称性，成交量对上偏已实现半方差有更强的解释力，且正的成交量冲击比负的

成交量冲击对期货市场的影响更大，也间接反映出中国铜、铝期货市场投资者存在较强的投机性。 

关键词：有色金属期货；量价关系；高频数据；成交量；非对称性 
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