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Abstract: In order to design the press bend forming path of aircraft integral panels, a novel optimization method was proposed, 
which integrates FEM equivalent model based on previous study, the artificial neural network response surface, and the genetic 
algorithm. First, a multi-step press bend forming FEM equivalent model was established, with which the FEM experiments designed 
with Taguchi method were performed. Then, the BP neural network response surface was developed with the sample data from the 
FEM experiments. Furthermore, genetic algorithm was applied with the neural network response surface as the objective function. 
Finally, verification was carried out on a simple curvature grid-type stiffened panel. The forming error of the panel formed with the 
optimal path is only 0.098 39 and the calculating efficiency has been improved by 77%. Therefore, this novel optimization method is 
quite efficient and indispensable for the press bend forming path designing. 
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1 Introduction 
 

As a traditional forming method for aircraft integral 
panels, press bend forming possesses many advantages, 
such as low tooling cost, short cycle time and 
adaptability to different contours[1]. Based on the 
three-point bending principle, press bend forming 
process performs multi-step bending with universal dies 
according to planned paths to form single or compound 
curvature contours. 

The critical factor to form the contour of the panels 
is the bending path, which includes the bending position 
and the punch displacement. In many aircraft companies, 
the planning of press bend forming path simply depends 
on the intuitions of the operators, who carry out 
numerous trial and error tests. Since the relation between 
the forming path and the objective shape is rather 
complicated and the flat panel is very expensive, the trial 
and error method will certainly lead to great loss of 
money and time. Therefore, the optimization of the press 
bend forming path is rather essential. Academic research 
on the optimization of metal forming process using FE 
simulations is gaining more and more attention. Many 
metal forming processes are considered: deep 
drawing[2−5], hydroforming[6−8], superplastic forming 

[9−10], extrusion[11], forging[12−14], and several other 
processes[15−16]. However, few attempts have been 
made to optimize the press bend forming of aircraft 
integral panels. A new method for solving this problem is 
proposed in this work. 

Genetic algorithm(GA) is an adaptive search 
method based on Darwinian principles of natural 
selection, survival of the fittest, and natural genetic 
phenomena. With strong capability in optimizing 
functions with unknown dependence on design variables, 
GA has been widely used in many optimization 
problems[17]. GA is able to search very large solution 
spaces efficiently, since it uses probabilistic transition 
rules instead of deterministic ones and most effectively 
applied to problems in which small changes result in 
very nonlinear behavior in the solution space[18]. But, 
the optimization of press bend forming process by the 
GA method only is rather inefficiently numerous; runs of 
FEM analysis are needed; and each run of FEM 
simulation always takes several weeks. 

The response surface methodology, RSM, is an 
optimization method which uses approximations of the 
objective and constraint functions. The approximations 
are based on functional evaluations at selected points in 
the design space[19]. By using the response surface to 
replace the iterations of FEM analyses, the optimization 
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efficiency could be greatly enhanced. However, 
prediction based on the polynomial equation commonly 
used in RSM, is often limited to low levels, resulting in 
poor estimations of optimal formulations[20]. Artificial 
neural network(ANN) has a considerable capability of 
mapping the nonlinear relationship between the input and 
the output that cannot be efficiently predicted by 
analytical or conventional statistical models[21−22]. It 
has been proved that neural network response surfaces 
have higher precision than polynomial response surfaces 
[23−26]. 

The goal of this work is to develop an integrated 
approach using FEM equivalent model[27], artificial 
neural networks(ANN) and genetic algorithms(GA) for 
optimum path design of press bend forming. Then, an 
example is presented to verify this novel optimization 
method. 
 
2 Theoretical background 
 
2.1 BP neural network response surface 

BP network is a feed-forward back propagation (BP) 
multilayer network. The artificial neurons are organized 
in layers with one or more intermediate hidden layers 
placed between the input layer and output layer, sending 
their signals “forward”. First, the network obtains some 
information signals by the input layer; and the output 
produced from the first layer is then fed subsequently 
into the second layer and so on. The errors are then 
propagated backward[17]. The standard BP algorithm is  
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where t is the iteration number; xi is the input of the 
neuron; yi is the actual output of the neuron; f (•) is the 
Sigmoid function; θ is the bias of the neuron; wij is the 
connection weight of neuron i and neuron j; η is the 
learning rate; δj is the error of each neuron; and T is the 
expected output. 

According to Kosmagoro theory, a three-layer BP 
network can approximate any continuous function when 
the proper structures and weights are provided. Therefore, 
in this work, a three-layer model using a back 
propagation(BP) algorithm is chosen. 

The network adjusts its parameters by learning and 
training the data samples, by which the neural network’s 
accuracy in foreseeing the performance is decided. So, it 
is crucial to determining the proper range of data to be 

used for training with a good experimental design 
method. Taguchi method uses a special set of arrays 
called orthogonal arrays to arrange experiments. These 
standard arrays stipulate the way of conducting the 
minimal number of experiments to give the full 
information of all the factors[28]. With this experimental 
design method, the calculation time can be greatly 
reduced and the “over learning” of the network can be 
avoided. Hence, FEM simulations are conducted 
according to the Taguchi experimental design method to 
gain the training data samples. 
 
2.2 Genetic algorithm 

The mathematical model of optimization generally 
consists of the objective function, design variables, the 
constraints, and the optimizing algorithm. The 
mathematical expression is  
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where f(x) is the objective function; n is the number of 
design variables; m is the number of the constraint 
function gj(x); ximin and ximax are the upper and the lower 
constraints of the design variable xi, respectively. 

The genetic algorithm based on natural selection is 
a method for solving both constrained and unconstrained 
optimization problems, and a process driving beiological 
evolution. It is well known that GA is able to find the 
global optimization point, and the results of this 
algorithm are more reliable than those of the common 
methods of optimization. Furthermore, it is good for 
optimizing the “Black Box” problem, such as the trained 
neural network. 

The genetic algorithm repeatedly modifies a 
population of individual solutions. At each step, the 
genetic algorithm selects individuals at random from the 
current population to be parents and uses them to 
produce the children for the next generation. Over 
successive generations, the population “evolves” toward 
an optimal solution. The genetic algorithm uses three 
main types of rules at each step to create the next 
generation from the current population. Selection rules 
select the individuals, called parents, which contribute to 
the population at the next generation. Crossover rules 
combine two parents to form children for the next 
generation. Mutation rules apply random changes to 
individual parents to form children. The basic GA is 
expressed as follows: 
 
SGA=(C, E, P0, M, Ф, Γ, Ψ, T)                (3) 
 
where C is the coding method for individuals; E is the 
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fitness function for individuals; P0 is the initial random 
population; M is the size of the population; Ф is the 
selection function; Γ is the crossover function; Ψ is the 
mutation function; and T is the stopping criteria. 
 
2.3 Equivalent model of press bend forming 

FEM analysis seems to be disabled in the press bend 
forming of integrally stiffened panel research, because of 
the complexity of the integral panel structures, the 
multi-step process and the limitations of the hardware. 
So, we created equivalent models[27] to conduct 
simulations and optimizations more efficiently. 

Plastic equivalent plate is a plate made of a virtual 
material that forms the similar shape as the detailed 
model when being formed with the same bending path. 
The virtual material with special plastic characteristics is 
obtained by in-depth analysis of the bending and 
springback mechanics of the detailed models. The key 
factor in calculating the virtual material parameters is to 
ensure that both models yield at the same punch 
displacement and possess the same outer radius after 
springback. FEM simulation results indicate that at the 
same punch displacement, the error of equivalent model 
is less than 6%, while the efficiency of FEM simulation 
has been improved by 80%[27]. So, it is possible to plan 
the forming path with much less modeling and 

calculation time than optimizing with the detailed models. 
The overall methodology for the forming path 
optimization of aircraft integral panels is shown in Fig.1. 
 
3 Optimization of press bend forming path 
 
3.1 Description of optimization problem 

A workpiece is designed according to typical 
structures of the real aircraft panels, the length of which 
is 500 mm. The material is aluminum alloy 7B04-T7451. 
The radii of the punch and the die are both 35 mm, and 
the die gap is 100 mm, as shown in Fig.2. 

Press bend forming is conducted at three positions, 
and the distances between the bending positions are 100 
mm. The objective shape of this three-step forming is an 
arc with the radius of 1 430 mm and the centre angle of 
16˚. As shown in Fig.3, the whole arc represents the 
outer surface of the workpiece. With the three bending 
positions as the centers, three 160 mm-long (arc length) 
sections are chosen symmetrically to measure the arc 
heights. The arc heights are h1, h2 and h3, which 
represent the arc heights of the three sections, 
respectively. From the geometry point of view, the ideal 
arc height of each section is: h=2.294 6 mm. 
3.1.1 Objective function 

The press bend forming error is taken as the 
 

 
Fig.1 Flowchart of forming path optimization based on BP-GA algorithm 
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Fig.2 Sketch map of press bend forming process 
 

 
Fig.3 Sketch map of press bend forming path optimization 
problem 
 
objective function of this optimization problem, and the 
forming error is defined as 
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where 
h

hhh −
=Δ 1

1  is the relative arc height error of 

the left section; 
h

hhh −
=Δ 2

2  is the relative arc height 

error of the right section; and 
h

hhh −
=Δ 3

3  is the 

relative arc height error of the middle section. 
3.1.2 Design of variables 

Press bend forming is a multi-step forming process. 
If the bending positions of press bend forming are too 
close to each other, the influence among different 
bending steps could be so remarkable that the 
deformation areas may overlap each other. So, punch 
displacement at any position will make a contribution to 
the final shape. In order to get the symmetric shape, the 
punch displacement at the left and the right section 
should be the same. Assuming the side punch 
displacement as X1, and the middle punch displacement 
as X2, as shown in Fig.3, X1 and X2 are taken to be design 
variables of this optimization problem. 
3.1.3 Constraints 

The punch displacements commonly adopted in 
factories are around 5 mm. The one step press bend 
forming FEM model with the punch displacement of 3, 4, 
5 and 6 mm are set up to choose the range of the punch 
displacement. The calculated arc heights are 1.12, 1.90, 
2.71 and 3.55 mm, respectively. And buckling begins to 
appear on the stiffeners when the punch displacement 
reaches 6 mm. By considering both the ideal arc height 
and the forming quality, the constraints of the design 

variables are selected: 
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                              (5) 

3.2 FEM modeling of multi-step press bend forming 
FEM analysis techniques allow taking benefit from 

predictions of simulation methods to determine the 
optimal bend forming path. In order to enhance the 
calculation efficiency, an FEM equivalent model of press 
bend forming of integrally stiffened panels is established. 
When the material parameters of the plastic equivalent 
plate are calculated, Eq.(6) needs to be satisfied and the 
detailed model and the equivalent model should yield at 
the same punch displacement to get the same contours 
after springback: 
 
R2E=R2D                                     (6) 
 
where R2E is the bending radius of the outer surface of 
the plastic equivalent plate after springback, and R2D is 
the bending radius of the outer surface of the detailed 
model after springback[27]. The parameters of the virtual 
material calculated using the method proposed in our 
previous study[27] are as follows: the yield stress(σsE) is 
303.397 MPa; the hardening exponent(nE) is 0.629; and 
the hardening coefficient(KE) is 1 220.213. 

The simulations are carried out using the 
commercial code ABAQUS. Press bend forming is a 
multi-step forming process, and the springback takes 
place continually. In order to improve the simulation 
accuracy and avoid constantly transferring between the 
explicit and implicit algorithms, both the forming and 
springback processes are simulated with ABAQUS/ 
Standard. The workpiece is modeled with solid elements 
C3D8R. The enhanced hourglass control approach is 
chosen. The tools are modeled with discrete rigid 
surfaces. As shown in Fig.4, by moving the punch and 
the dies, press bending and springback at different 
positions are accomplished. 
 
3.3 Development of neural network response surface 

The neural network response surface requires 
training with FEM experimental data to map the 
relationships between the punch displacements and the 
forming errors. The orthogonal test matrix L25(56) is 
adopted to carry out the experimental design. The side 
punch displacement X1 and the middle punch 
displacement X2 are taken as the two experiment factors, 
and the forming error eshape defined in Eq.(4) as the 
experiment target. The factors and levels of the Taguchi 
method are shown in Table 1. 

Twenty datasets are rationally selected to be training 
samples, and the other five datasets to be testing samples. 
Training is accomplished using the BP algorithm. A 



YAN Yu, et al/Trans. Nonferrous Met. Soc. China 20(2010) 294−301 

 

298
 

 

 
Fig.4 Mises stress distribution of multi-step press bend forming process: (a) End of first bending; (b) End of first springback; (c) End 
of second bending; (d) End of second springback; (e) End of third bending; (f) End of third springback 
 
Table 1 Experimental layout of orthogonal test 

Level 
Factor 

1 2 3 4 5 

Side punch 
displacement/mm 3.0 3.5 4 4.5 5 

Middle punch 
displacement/mm 2.5 3.5 4 4.5 5 

 
three-layer network is developed, with the Tan-Sigmoid 
transfer function in the hidden layer and the linear 
transfer function in the output layer. The network should 
have two input neurons because there are two design 
variables. Five neurons are used in the hidden layer, as 
shown in Fig.5. 

The Levenberg–Marquardt back propagation 
algorithm avoids computing Hessian matrix when 
modifying the second-order training speed. This 
algorithm appears to be the fastest method for training 
moderate-sized feedforward neural networks, thus   
LM is used for training. And the gradient descent with 
momentum weight and bias learning function (Learngdm) 
are used for learning. Learngdm calculates the weight 
change for a given neuron from the neuron’s input and 
error, the weight (or bias), learning rate, and momentum 
constant, according to gradient descent with momentum. 
MSE is taken as the network performance function,  

 

Fig.5 Topological structure of BP neural network 
 
which measures the network’s performance according to 
the mean of squared errors: 
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where N is the total number of training dataset; ti is the 
training sample data; and ai is the output of the neural 
network. As shown in Fig.6, the training error decreases 
rapidly to the appointed range. 

After the neural network is trained, its accuracy 
should be examined in response to untrained inputs so as 
to specify the network’s accuracy in foreseeing the 
performance of the certain process. The five datasets that 
did not participate in the training are used to test the 
network. The outputs of the neural network and the 
Taguchi test results are shown in Table 2. It is observed  
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that the relative errors for all the datasets are less than 
6%, which means that the developed neural network is 
rather effective in mapping the relationship between the 
punch displacement and the press bend forming error 
 

 
Fig.6 Training performance of neural network 

(eshape). Therefore, this neural network can appropriately 
substitute the time consuming FEM simulations in the 
GA optimization stage to enhance the optimization 
efficiency. 

The trained neural network response surface is 
shown in Fig.7, in which the small circle marks represent 
the sample data, and the position pointed out by the 
arrow is the place where the press bend forming error 
(eshape) gets the minimum value. 
 
3.4 Optimization with genetic algorithm 

Fitness function is used to convert the objective 
function value to the corresponding fitness value. With 
the M-file describing the objective function, the trained 
neural network response surface is defined as the fitness 
function for the GA optimization. Rank scaling function, 
stochastic uniform selection function, elite count 
reproduction function, and Gaussian mutation function 
are adopted as the GA options. In this work, the size of  

 
Table 2 Contrast between the output of neural network and Taguchi test results 

eshape Test number X1/mm X2/mm 
Taguchi test Neural network output 

Relative error/% 

1 3.0 2.5 0.938 18 0.943 0 0.513 76 

2 3.0 3.5 0.748 61 0.755 0 0.853 58 

3 3.0 4.0 0.692 42 0.688 0 0.638 34 

4 3.0 4.5 0.678 09 0.671 0 1.045 58 

5* 3.0 5.0 0.708 61 0.691 1 2.471 03 

6 3.5 4.0 0.461 75 0.454 6 1.548 46 

7 3.5 4.5 0.448 19 0.455 3 1.586 38 

8 3.5 5.0 0.500 76 0.514 1 2.663 95 

9 3.5 2.5 0.771 56 0.757 7 1.796 36 

10* 3.5 3.5 0.535 66 0.525 5 1.896 73 

11 4.0 5.0 0.335 31 0.320 0 4.565 92 

12 4.0 2.5 0.627 96 0.638 1 1.614 75 

13 4.0 3.5 0.329 43 0.329 6 0.051 60 

14 4.0 4.0 0.218 23 0.223 2 2.277 41 

15* 4.0 4.5 0.219 78 0.218 2 0.718 90 

16 4.5 3.5 0.240 99 0.227 6 5.556 25 

17 4.5 4.0 0.078 06 0.098 5 0.563 67 

18 4.5 4.5 0.125 82 0.114 0 1.446 51 

19 4.5 5.0 0.300 10 0.308 5 2.799 07 

20* 4.5 2.5 0.571 92 0.583 3 1.989 79 

21 5.0 4.5 0.334 71 0.331 2 1.048 67 

22 5.0 5.0 0.448 38 0.449 6 0.272 09 

23 5.0 2.5 0.610 28 0.610 1 0.029 49 

24 5.0 3.5 0.357 16 0.358 1 0.263 19 

25* 5.0 4.0 0.297 92 0.296 5 0.476 64  
The datasets with “*” marks are the testing datasets for the neural network, while the others are the training datasets. 
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Fig.7 Sketch map of neural network response surface 
 
the initial population is 30, and the crossover rate is 0.8. 
The stopping criteria is reached when X1=4.47 mm, and 
X2=4.22 mm. The output of the neural network with this 
input is: eshape=0.083 298. 
 
3.5 Verification with FEM analysis 

Verification of the optimal press bend forming path 
is carried out with both the FEM equivalent model and 
the FEM detailed model. The contrasts of the FEM 
analyses are shown in Table 3. According to the 
simulation results of the FEM equivalent model, it is 
obvious that the optimized path works much better than 
any press bend forming path used in the Taguchi test 
does. In addition, this optimal path also works well with 
the detailed model, and the forming error (eshape) is only 
0.098 39. The forming result indicates that the equivalent 
model performs quite well in the aspect of “equivalent”, 
and the differences between the two models are less than 
4.25%. The calculating efficiency of it has been 
improved by 77%. 

As shown in Fig.8, not only the shape accuracy but 
also the surface quality is ensured by the optimal path of 
press bend forming. The surface of the stiffened panel is 
smooth with no buckling on the stiffeners, and the shape 
is well symmetrically formed. 

Considering the width to thickness ratio, the bending 
deformations of the stiffener and the skin are narrow 
plate bending and wide plate bending, respectively. 

 

 

Fig.8 Equivalent plastic strain distribution of detailed model:  
(a) Front view; (b) Isometric drawing 
 
So, the stiffener is under the plane stress condition, while 
the skin is under the plane strain condition. Compared 
with the outer surface of the skin, the normal bending 
stress of the stiffener top is larger, as it is farther from the 
neutral surface. In addition, the compression stress from 
the punch is substantial. As a result, the plastic 
deformation appeared first at the stiffener top. Because 
the curvature of the aircraft wing panel is usually very 
small, the punch displacement is not large. Therefore, 
most of the material of the specimen does not experience 
plastic deformation, as shown in Fig.8. And the final 
curved shape is owing to the plastic deformation of the 
stiffeners. 
 
4 Conclusions 
 

1) The application of the FEM equivalent model 
ensures fast optimization of the bend forming path. 
Compared with the detailed model, the computation 
efficiency of the equivalent model has been improved by 
77%, and the differences between the two models are 
less than 4.25%. Thus, the total calculation time of the 
FEM Taguchi experiments can be dramatically reduced. 

2) The developed neural network response surface 
has a strong mapping ability for press bend forming 
process of aircraft integral panels. It acts as a good 
substitute for the time consuming FEM simulations in  

 
Table 3 FEM verification of optimal bending path 

Model 

Minimum eshape 
before 

optimization 
 (Taguchi test) 

eshape after 
optimization 

Left arc height 
after optimization/

mm 

Middle arc height
after optimization/

mm 

Right arc height 
after optimization/ 

mm 

FEM analysis
CPU time/s 

FEM 
equivalent 

model 
0.078 06 0.036 03 2.347 62 2.323 04 2.351 21 3.92×104 

FEM 
detailed 
model 

− 0.098 39 2.451 98 2.320 96 2.454 21 1.68×105 
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the GA optimization, and achieves the goal of 
optimization with much less runs of FEM calculations. 

3) The precise quantitative results of this study 
show that the FEM equivalent model, neural network 
response surface and their combination with the GA can 
realize the fast optimization of the press bend forming 
path, which is a pivotal problem in the aircraft integral 
panel manufacturing. Furthermore, this work provides a 
valuable research method for the optimization of other 
complicated forming processes. 
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