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Abstract : Eigen characters of the funda mental equations , equilibrium equation of stress and harmony equation of defor

mation, of the traditional elastic mechanics under geometrical space were testified by means of the concept of standard

space , and the modal equilibrium equation and the modal harmony equation under mechanical space were obtained . Based

on them and the modal Hooke’ s law , a new system of the fundamental equation of elastic mechanics is given. The advan-

tages of the theory given here are as following : the form of the fundamental equation is in common for both isotropy and

anisotropy , both force method and displace ment method, both force boundary and displace ment boundary ; the number of

stress functions is equal to that of the anisotropic subspaces, which avoids the man- made mistakes ; the solution of stress

field or strain field is given in form of the modal superimposition, which makes calculation simplified greatly ; no matter

how complicated the anisotropy of solids may be, the complete solutions can be obtained .

Key words : anisotropic solid ; elastic mechanics ; eigen form ; standard space

Document code : A

1 INTRODUCTION

The traditional theory of elastic mechanics is
composed of three fundamental equations , which is e-
quilibrium equation, harmony equation, and general-
ized Hooke’ s law . The former two equations hold for
all solid materials under the condition of continuity,
but the latter is related to the properties of solids.
The task of elastic mechanics is trying to obtain the
solution of these closing equations and corresponding
boundaries . But up to now, we find that the solving
capability of elastic mechanics is very limited, espe-
cially in solution of the anisotropic problem, which
make us have to seek the help of some numerical
methods, such as FEM. When introspecting this
phenomenon , it is found that there are some inadqua-
cy or draw-backs in the traditional elastic mechanics .
The author think that the traditional elastic mechan-
ics has the geometric draw-back , because it describes
the fundamental equations under geometrical image .
In other words , the geometrical space restricts the u-
niversality of physical equations, which is brought by
certain result of the geometrical mechanics. It is
known that the Hooke’ s law under geometrical image
does not present the mechanical properties of solids
clearly, it is related to coordinates . That is, elasticity
and anisotropy of solids are totally put into an elastic
matrix . But in fact, the anisotropy of solids is related
to coordinates , elasticity is not. As a result, the con-
stitutive equation is succinct , but it makes great bur
den on physical equations because of introducing geo
metrical factors into the m, which makes the solution
of elastic mechanics very difficult. This paper gives
up the method of the synthetic elastic matrix under
geometrical image , and studies the process of elastic

@ Received date: May 18,1999 ; accepted date: Aug .8 , 1999

mechanics under mechanical image . The results show
that the fundamental equations in the form of tensor
are changed into the form of scalar, which makes the
solution easy and simple , especially for anisotropic e-
lastic mechanics .

The idea of eigen elasticity originated from the

works! ! 2!

of Kelvin, after quieted nearly a hundred
years, it was raised again in 1980’s, and improv-
ed®”31. Based on it , the author developed a standard

[6~11]

space theory which is much beneficial to the

solution of anisotropic elastic mechanics. This paper
tries to study elastic mechanics in mechanical space .

2 EIGEN PROPERTY OF SOLID MATERIALS

The matrix form of the generalized Hooke’ s law

under geometrical image isl3 73]

o= Cé¢& (1)
it holds the eigen equation of elasticity

(C- A) ¢=0 (2)

where Adand ¢are eigenvalue and eigenvector of e-
lastic coefficients matrix C , respectively . The former
is eigen elastic module ( Kelvin module) , and is not
related to coordinates ; the latter is standard space,
and indicates the anisotropic direction of solids.
Thus, the elastic coefficients matrix under geometri-
cal image can be decomposed spectrally under me-
chanical image , that is

C= o40" (3)
where @is eigen modal matrix, and is orthogonal
and symmetric. A is eigen elastic matrix , and is diag-
onal .

So, the generalized Hooke’ s law under standard

space becomes the normal form of
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o = A& i=1,2,..,6 (4(a))

(4(b))
They are called the modal Hooke’s law, in
which the modal stress vector and modal strain vector
are respectively
o' = d'o (5)
e = o'¢ (6)
Eqn.(4) are six independent ones. So, under
mechanical image , the mechanical properties of solids

can be described by six com mon scalar Hooke’ s law .

3 EIGEN EXPRESS OF FUNDAMENTAL EQUA
TIONS

3.1 Eigen express of equilibrium equation

Under geometrical image , the equilibrium equa-
tion of solids in which body force is neglected is

G = 0 (7(a))
or Ty =0 (7(b))

Differentiating Eqn.(7(a)) with jand Eqn.(7
(b)) with i , then adding them and yielding

Gk + %k = 0 (8)

It is another form of equilibrium equation, and
can be written in the form of matrix due to sy mmetry
on ( i,j) inits two sides, that is

A0 =0 (9)
in which 4is a symmetrical differential operator ma-
trix of order of two, and called stress differential op-
erator matrix .

Al 0 0 0 A3] A21

A22 0 A32 0 A21

A33 A32 A3l 0
A= (10)

(22 + M33) A21 A3l

symmetry (A1 + M33) A32

(A2 + A1)
2
where  A;; = Ay = 07/0x0x;.

Substituting Eqn.(5) into Eqn.(9) , multiply-
ing its two sides with the transpose of eigen modal
matrix and using the orthogonal sy m metrical property
of the matrix,i.e. @ @ = T, itis obtained:

D" Ao = 0 (1r)

The author proved[“] that there exists same
standard space in stress differential operator matrix 4
and elastic coefficients matrix C . So, it is obtained:

D' AD = A (12)
where A" s diagonal and called eigen stress differ
ential operator matrix .

Thus, under mechanical image , the equilibrium
Eqn.(7) becomes

ATl =0 i=1,2..6 (13)

They are also six independent scalar equations .

3.2 Eigen express of harmony equation

Under geometrical image , the harmony equation
of deformation of solids is
&iw - & + Guij- &Gy = 0 (14)

1

Because of symmetry on (i, j) in &; and ( k,

') in &y , Eqn.(14) can be written as
vE=0 (15)
where vis also symmetrical differential operator
matrix of order two, and called strain differential op-

erator matrix .

0 Vi3 Vi - Vo 0 0
0 Vi 0 - Vi3 0
0 0 0 - Yy,
V= (16)
- v11 v12 vl}
Sy m metry - Vo, Vs
- v33
where V= Vv, = 0%/0 x;0 X

Comparing Eqn.(9) with Eqn.(15) , and using
Eqn.(1) , it is obtained

A= yC (17)

Substituting Eqn.(3) and Eqn.(12) into Eqn.
(17) , it becomes

v= &N O oA DT = op”T A DT (18)
Letting v'= 4" 4, it is obtained
v'= o' vo (19)

Eqn.(19) shows that the strain differential op-
erator has same form of spectrum as the stress differ
ential operator under mechanical image, it is called
eigen strain differential operator matrix .

Thus, the harmony equation of deformation un-
der mechanical image can be written as following by
using Eqn .(15) and Eqn.(19)

viE =0 i=1,2,..6 (20)

4 FUNDAMENTAL EQUATION OF ELASTIC
MECHANICS UNDER MECHANICAL IM
AGE

It is known from the equilibrium Eqn.(7) that
stress tensor J; which holds Eqn .(7) may consist of a
symmetrical tensor Qi of order of two:

G = CimLinsgrs mn (21)
where ¢, is just stress function.

If written in the form of vector, Eqn.(21) be-
comes

o= v (22)

Further, Eqn.(22) can be written as the eigen
form under mechanical image by using Eqn.(5) and
Eqn .(18) as

o V*g*

*

or 0 = Vg

(23(a))

i=1,2,..,6 (23(h))
where g* = CDTg , is modal stress function. Eqn.
(23) is just operational form of the modal stress .

In the same way, the operational form of the
modal strain can also be gotten:

& = A fi i=1,2,..,6 (24)
where f, is modal strain function.

Now, we deduce the fundamental equation of e-
lastic mechanics under mechanical image .

Comparing the eigen equilibrium Eqn.(13) with
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the eigen harmony Eqn.(20) , and using the eigen
Hooke’ s law, Eqn.(4) , it is gotten

vi = Aa; i=1,2,..,6 (25)

It shows that the eigen strain differential opera-
tor is in direct proportion to the eigen stress differen-
tial operator, the proportional coefficient is just eigen
elasticity .

In order to obtain the fundamental equation,
substituting Eqn.(23) and Eqn.(24) into Eqn.(13)
and Eqn .(20) respectively, we get

A; V;g; =0 i=1,2,..,6 (26)

ViAfi =0 i=1,2,.,6 (27)

Because of exchangeable property of the eigen
differential operator, let

*

i = A Vi = VA

i=1,2,...,6 (28)
Thus , it is gotten
gi = fi = & i=1,2,..,6 (29)

So, ¢ can be understood as the mechanical func
tion, it expresses not only stress, but also strain.
o= V] o i=1,2,..,6 (30)
& = Ay i=1,2,..,6 (31)

As a result, the fundamental equation of elastic
mechanics becomes the unitized and solitary form :

ol g =0 i=1,2,..,6 (32(a))

(32(b))

or Dol 4=0
i=1

It is seen from above analysis that under me-
chanical image, distinguishing not only between
stress solution and strain solution (the force method
and the displace ment method) , but also between e-
quilibrium equation and harmony equation are all
meaningless because of existence of Eqn.(4) and
Eqn.(25) , and distinguishing between force bound-
ary and displace ment boundary is also meaningless be-
cause of the existence of Eqns.(30) ~ (32) . There-
fore , they are much beneficial to the solution of elas-
tic mechanics . Another important thing of Eqn.(32)
is that it points out that the number of independent
mechanical functions is equal to that of anisotropic
subspaces, which makes the choice of mechanical
function of various anisotropy much convenient, and
is completely different from the method of the tradi-
tional elastic mechanics .

5 FORM OF SOLUTION AND BOUNDARY CON
DITION UNDER MECHANICAL I MAGE

In order to obtain the solution of Eqn.(32) for
various anisotropic solids , it is necessary to give a set
of boundary condition to the funda mental equation .

Using Eqn.(5) and Eqn.(30) , it is gotten

Vig= 60 (33)

It also holds on the boundary of solids. Thus,

the equations which have the definite solution for
anisotropic solids are given as followings :

ViAi 4 =0 i=1,2,..,6 (34)
Vigls= G0 i=1.2,.6 (35)
where Eqn.(35) are boundary conditions under

various anisotropic subspaces
In fact, Eqns . (34) and (35) only give the solu-
tion of order i , the complete solution of stress field
and strain field should be superimposition of them .
By Eqn.(5) and Eqn.(6) , we have
G= GV g+ -+ 4V g (36)
E= QA g+ ot GA g (37)
The superimposed form of solution makes the
calculation simplified because of the flexible choice of
calculating order. For example, we can neglect the
high order results for some proble ms by using the cut-
ting technology of mode, which not only reduces the
calculating work , but also still holds the necessary ac-
curacy . The cutting error can be estimated by follow-
ing Egn 171
N B VA SRS Vo
RV VNSV

x 100 %

(38)

where e, is the cutting error of order p-
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