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[ Abstract] Based on the nonlinear error equation of deformation network monitoring, the mathe matical model of non-

linear dynamic optimal design of class two was put forward for the deformation network monitoring, in which the target

function is the accuracy criterion and the constraint conditions are the net work’ s sensitivity , reliability and observing cost .

Meanwhile a new nom derivative solution to the nonlinear dynamic optimal design of class two was also put forward. The

solving model uses the difference to stand for the first derivative of functions and solves the revised feasible direction to get

the optimal solution to unknown parameters. It can not only make the solution to converge on the minimum point of the

constraint problem, but decrease the calculating load.
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1 INTRODUCTION

The optimal design for deformation network
monitoring is one of head fields studied at abroad and
home . Four study objects were put forward by FIG in
1990, one of them is the optimal design for modern
deformation network monitoring. The quality and
cost of deformation network monitoring are mainly
dependent on the design. Therefore the design theory
of deformation network monitoring is one of main
contents of modern deformation monitoring theories .
The optimal design of class two first put forward by
Grafarend is the design for observing plan and weight
to control observing accuracy and cost of deformation
network monitoring , which is the importance of opti-
mal designs of four classes . The optimal design of de-
formation network monitoring as a scientific and strict
method, is different from the classical standard de-
sign, because the most functions of deformation mon-
itoring system are nonlinear. Obviously the nonlinear
dynamic optimal design for deformation network
monitoring is more scientific and accurate than the
linear programming design widely used .

TAOet al earlier put forward the nonlinear dy-
namic optimal model of class two and its solution
method for deformation network monitoring , which
makes the target function f( P) to be minimum under
the constraint condition ¢( P) >0 to get the optimal

1. All solution methods must ana-

observing weight[1
lytically calculate the first derivative of the target
function' 23!, Then the feasible descent direction S
at the feasible point P'Y must be determined using

the derivative of the target function. The pace factor

ay can be calculated in the direction S'X with the
linear seeking method. Then we can get a new point
PLE+D

calculate the seeking direction. Calculating the first

. The key problem of the method is how to

derivative is necessary to repeatedly solve the seeking
direction S every time , whose working load is very
large . Based on these , the method put forward in the
paper uses the difference to stand for the first deriva-
tive of function and repeatedly solves the optimal re-
sult in the revised feasible direction. The analytic
method has the same convergence as the existing
methods , for it makes the result to better converge on
the minimum of the constraint problem[4’5]. In the
meantime, the analytic method can largely decrease
the working load. It is simple and practical to calcu-
late the result with the method.

2 QUALITY CRITERIA AND MATHEMATICAL
MODEL

TAO et al have given the nonlinear error equa-

tion of deformation network monitoring as follows! ! !

Vl = (/’l( dl > d2 > R dm) - ll Pl

V2 = (//2( dl > d2 > R dm) - l2 P2
: . S

Vn = (//n( dl > d2 > R dm) - ln Pn
where P is a diagonal weight matrix of measure-

ment, P'=( P, P,,
whose correction is V;, d; is the displace ment of de-

.., P,); l; is measure ment
formation parameter. Therefore we can obtain all
quality criteria as follows :

V= g¢(d -1 P (2)
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The covariance K ; of displace ment d of defor
mation parameter is known as the accuracy criterion,
that isl®]

— g -1
Kdd:[ AT PA- YT%JS—Z] AT PA-
— 17 T
T _ T% 3
H ATPA- Y adl (3)
where
| 0a Onp 0 ¢n
F =134, 04, " od,’
Oy 0 g 0 4|
dzl /adzl /adm ’
v
woy yo 00 0
0O v ¥ W 0
0 0w w - Y
_ 04 _
Ai ads yi = - Pl(‘/)l(d) - li)'

The critical value to find out the displace ment
can be called as the measure of sensitivity of deforma-
tion network monitoring , that is

% %

Vdy = (4)
Vg Qag
where @ is the variance of unit weight; & is the

norr central parameter, in general & = 4 307 ; gcan
be determined by the pre-given direction. To simplify
the calculation, let Q; = 2( ATPA)"' | Then Eqn.
(4) can be rewritten as follows :

% %

T (5)
g g A" PAg

The reliability criterion of network is the mini-

mum of gross errors which can be found out, that
io[81]
is

vd, =

% %
VO li = - = (6)
P Jgi
The observing cost criterion is that the sum of
observing weights is equal to or less than a given value

P < @ - (7)
s -, 1)y, P= (P, Py, -,

The unknown parameter is the observing weight
P in the mathematical model of nonlinear dynamic
optimal design of class two for deformation network
monitoring . The target function f( P) is the covari-
ance K,y of the displace ment of the deformation pa-
rameter, that is

f(P) = Ky

= [ ATPA - JT%%]

T T _TQE]-I
APA‘{APA- Y od

-1
.

T

= min (8)
The constraint condition is given as following :
The sensitivity constraint is
% %

Vdy . 20 >
1 1,7
) 8 A" PAg
where V dyis the minimum displace ment pre-given

in design stage .
The reliability constraint condition is
% %
>
P Jgi

Vol is the pre-given threshold value to

Voli - 0 (9)

where

probe the gross error in design stage .
The cost constraint is

o1 -1 -1

Py
1 0 0 P,
0 1 0 ... 0 -
0 0 0 1 Py
0
0] 20 (10)
0
which can be expressed as follows :
EP- b 20
where
-1 -1 -1
1 0 0
E = 0 1 0 0|,
0 0 0 1
0
b = 0
0

Therefore we can get the constraint set of the
proble m as following

g, &
gi(P) = vy = >0,
T T
I/:zg A" PAg
a, &
0“0 >0,

@(P) = Vol -

_ P g
g(P) = EP- b 20 .
Then we can get the optimal design model ( M)

obj.  min f(P)
s.t. g (P) 20
(P 20

Suppose Pis the optimal solution to the optimal
problem ( M) and P Y is the feasible solution that is
very close to P . If P'® can converge on the optimal
solution of the constraint problem, PO - p =

aKS(K) . But how to calculate the seeking direction
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S(R is the key problem . We can get[lo]

BN S§H = v (PN (12)
where BN is a positive definite and sy m metrical
matrix which only contains the information of the
first derivative ; V f( P is the first derivative ma-
trix . Tosolve Eqn.(12) , we can obtain the direction
stR , and analytically calculate the first derivative
Eqn.(12) . Although Eqn.(12) does not contain the
second derivative , we must calculate the first deriva-
tive when repeatedly solving Eqn.(12) . Therefore
this paper puts forward the difference to stand for the
first derivative to simplify the calculation .

Let f(P) = f(P,, Py, .., P, ,if Il PN
Pl < &, we can get

. F(PLRO + g, PO, ...,
lim

-0 &
K
P9

PN )

- P
FOPEY, P,
&
whose first difference is
Af o= F(PLR + &, P{O, ., PO -
FPLO, YO, PR
If &€-0,
then Af - Vplf(P).

, P

= V. f(P)

Hence we can get
Afy = vplf(P).

The same as the above , we can obtain

Mfo= fOPLY, Py%w g, PEO o P
FOPE L Py, e, PR
~ v, f(P),
Afyp = V, f(P).

We can also get the differences of g ( P) , g( P) and
g3 (P) as following :

Agn = gl(Pl(K) +& P{O, .., POy -
g (PLY, o, PLY)
= v, 5 (P,
Agiy = szgl(P(K)),
Agiy = Vp”gl(P(K));
Agy = V, g (P,
Agy = szgz(P(K)),
Agoy = Vp”gz(P(K));
Agy = vV, g (P,
Agy = szgs(P(K)),
Agsn = V,g(PP).
Finally we can get
Af= (Aflele "/Afn)T/
Ago= (Mg, Agia, -, Agln)T/

T
’ Ag2n) ’
T
’ Ag3n) ’

Agp = (Agzl, Agzz,

Ag3 = (Ag31, Ag32,

Ag= (Agl, Agz, Ag3).

Pcan be repeatedly calculated with the method
of revised feasible direction. The feasible direction

SR can be solved by

S=- (I-ag(aghag'agh af+
Ag(Ag" Ag) ' v (13)
where Iis a unit matrix, vis a parameter vector. S
must be satisfactory with the following formula :
AfS <0 (14)
Ag'S 20

The pace factor ax can be determined in the di-
rection S with the linear seeking method. ay is the
maximum of (1, 2°t 22 -..) , which is satisfacto
ry with

f( PO 4 GKS(K)) _ f( P(K))

< ag(A f9)TstH0
where

0< 7T<1

3 NON DERIVATIVE ALGORITHM PROCESS

1) Step 1

To let the repeated number K = 1 and give all
initial values which are respectively P! &) (&' >
0), pand T(TE (0,1)) .

2) Step 2

To calculate
&ny

3) Step 3

To calculate the direction §‘® from Eqn.(13) .
SHI has given the selection of parameter[4] CIF SUR s
satisfactory with Eqn.(13) , then go to Step 4. Oth-
erwise let &% = &9/2  then go to Step 2.

4) Step 4

To calculate the pace factor ag , that is

ay = max[ ay € (1,270,277, )

f(P(K) +G/KS(K)) _ f(P(K))
< a T(a f0) 89 (15)

First let a/K = 1 , then substitute a/K = 1 into
Eqn.(15) . If Eqn.(15) is correct, ax = 1 . Other
wise let again a/K = 1/2 . Repeat the above process .
If Eqn.(15) is correct, ag = 1/2 .
the above process until the given a/K is satisfactory
with Eqn .(15) and ag = a/K .

5) Step 5

To calculate Ax = f(PN + a8'0)
F(POY CIf Ag < g€ in which pgis a real number
and g> 0 , then go to Step 6 . Otherwise let &n =
&n0/ go to Step 2.

6) Step 6

Let PCX*D) =
Then go to Step 2.

AFCPOER)y and Ag( PN

Otherwise repeat

PO+ 480 and K= K+1
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7) Step 7

The above process can give a set of points
[ PR g0 g0 It e-0,aF5 > VS . Ife
- 0 and AfTS — 0 , the final Pis the optimal solu-
tion.

The nonlinear dynamic optimal design of class
two put forward in the paper is a nonlinear analytic
algorithm which is strict in theory . In practice, it is
simple and effective . It is more convenient than ana-
lytic algorithms of derivative nonlinear optimum. It
opens up a new way to solve the nonlinear dynamic
optimal design .
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