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Abstract: To dynamically update the shape of orebody according to the knowledge of a structural geologist’s insight, an approach of 
orebody implicit modeling from raw drillhole data using the generalized radial basis function interpolant was presented. A variety of 
constraint rules, including geology trend line, geology constraint line, geology trend surface, geology constraint surface and 
anisotropy, which can be converted into interpolation constraints, were developed to dynamically control the geology trends. 
Combined with the interactive tools of constraint rules, this method can avoid the shortcomings of the explicit modeling method 
based on the contour stitching, such as poor model quality, and is difficult to update dynamically, and simplify the modeling process 
of orebody. The results of numerical experiments show that the 3D ore body model can be reconstructed quickly, accurately and 
dynamically by the implicit modeling method. 
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1 Introduction 
 

Due to the limitation of geological conditions and 
exploration technology, complete and regular geological 
data cannot be obtained in geological exploration, and 
there is great uncertainty in modeling sparse data. The 
method of interpreting and 3D modeling of the complex 
orebody by artificial experience and human-computer 
interaction is inefficient, arbitrary and subjective, and 
difficult to update the orebody model. Therefore, it is of 
great significance to dynamically reconstruct the 
three-dimensional orebody models close to the original 
shape from the raw data and geological interpretation of 
multi-source and sparse sampling. 

The methods of geology modeling can be divided 
into two kinds, termed explicit modeling and implicit 
modeling [1]. The geometrical quality of the model built 
by the traditional explicit modeling method is not high 
enough, and there are a lot of degenerate triangles, which 
are prone to reveal defects such as opening and 
self-intersection. Implicit modeling recovers the 
three-dimensional orebody model through surface 
reconstruction using an implicit function. Compared with 
the traditional explicit modeling method, the implicit 
modeling method has the advantages of high mesh 
quality, repeatable process, global uncertainty and 

dynamic updating [2−4]. 
In the past two decades, a variety of implicit 

function interpolation methods including the discrete 
smooth interpolation (DSI) method [5], the (radial basis 
function, RBF) RBF-based method [6,7], the Hermite 
RBF (HRBF) method [8] and the moving least squares 
(MLS) method [9] have been developed. These methods 
are mainly applied to dense point cloud data of 
three-dimensional laser scanning and are difficult to fit 
sparse and uneven sampling data of geological 
exploration with various geological rules and constraints. 
Among them, RBF is a widely used interpolation method 
with complete theoretical support, which has been 
integrated into Leapfrog Geo software [10] and widely 
used in geological modeling. CARR et al [11] solved the 
problem of fast interpolation of large-scale point cloud 
data by introducing the fast multipole method (FMM). 
And the Leapfrog Geo software uses the similar method, 
FastRBF method [12,13], to interpolate large geological 
data sets efficiently. JONES and CHEN [14] transformed 
the contours into the three-dimensional distance field 
using the distance transformation by the contours of the 
orebody and reconstructed the model by iso-surface 
extraction. GUO et al [15] conducted a preliminary study 
on geological interfaces modeling using HRBF method 
with section constraints. 

The traditional RBF methods are based on domain 
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constrains, which are difficult to handle complex 
geological structural trends. More and more attention has 
been paid to the study of the RBF-based methods with 
generalized constraints recently. Several extended 
interpolants based on the theory of Hermite−Birkhoff 
interpolation with radial basis functions are developed to 
interpolate anisotropic and first-order Hermite data 
(points with normals), such as anisotropic RBF   
(ARBF) [16,17], generalized RBF (GRBF) [18] and 
generalized HRBF (GHRBF) [19,20]. More recently, a 
generalized interpolation framework using RBF from 
scattered multivariate structural data was presented by 
HILLIER et al [18] to generate continuous geological 
surfaces. However, each interpolation method has its 
own advantages and drawbacks, and is applicable to 
specific conditions. It is necessary to study interpolation 
methods that meet the constraints of specific geological 
rules in different situations to ensure the accuracy of 
geological model. 

The implicit modeling method is based on the 
reconstruction of an implicit function from the drillhole 
datasets. The geology space constructed by the 
combination of drilling samples is transformed into a 
signed distance field. The result of complex orebody 
model is expressed as a mathematical function, and the 
implicit surface is represented as a zero-level set of the 
function. To consider various types of geological rules, 
the GRBF interpolant was used as the implicit function. 
One of the advantages of this approach is that it can 
generate geometrically valid 3D ore body models 
directly from the raw drillhole data with or without the 
constraints of interpretation. 
 
2 Mathematical framework 
 

The GRBF interpolant is built upon the theory of 
generalized Hermite−Birkhoff interpolation [18−22] with 
radial basis functions. We will first review the relevant 
theory loosely. 

Given the known data (xi, λif ), i=1, 2, …, N, xi∈Rn, 
where λi is a linearly independent set of continuous linear 
functionals and f is some (smooth) data function, the 
generalized Hermite interpolation problem tries to 
construct the interpolant s(x) satisfying λis(x)=λif as 

1
( ) ( , ) ( ),  

N

j j
j

s p s Hω λ Φ′
=

′= + ∈ xx x x x            (1) 

 
where jλ ′x is continuous linear functional acting on a 
usual radial basis function Φ(x, x′) viewed as a function 
of x′=(x′, y′, z′). When conditionally positive definite 
functions are used, it is often required to construct 
low-order polynomials p(x) to ensure that the function 
converges. 

Four types of general constraints [18−22] can be 
constructed by the different operations of the continuous 
linear functional and the distance transformation, as 
shown in Fig. 1. 

(1) Domain constraints: The domain constraints are 
locations at which we require the implicit function to 
take on the specific values. The given μ scattered data 
points 1{ , ( )} i i if μ

=x x  satisfy  
f(xi)=fi, i=1, 2, …, μ                           (2)  
where fi is the function value of the geological domain. 

The domain constraint can well control the internal 
and external relations of the geological domain and is the 
most basic constraint to define the geological interface. 
According to the value of the function, the domain 
constraints can be divided into three different types: 
on-surface constraints (f(xi)=0), interior constraints 
(f(xi)<0) and exterior constraints (f(xi)>0). 

(2) Gradient constraints: The gradient constraints 
refer to the evaluation of some derivative at specific 
locations. The given σ scattered data points 

1{ , ( )}i i if μ σ
μ
+

= +∇x x  satisfy 
 

( )if∇ x =ni, i=μ+1, μ+2, …, μ+σ                 (3)  
where ni is the unit normal vector of the geological 
domain. 

The sign of the gradient constraint represents 
different shape constraints. The normal direction of ni 
points to the exterior of the shape, then the opposite 
direction points to the interior of the shape. The normal 
constraints can be used to construct the trend surface 
constraint in the domain. 

(3) Tangent constraints: The tangent constraints 
refer to the sampling orientations tangent to the domain 
at specific locations. The given τ scattered data 
points 1{ , ( ), }  i i i if μ σ τ

μ σ
+ +

= +∇ x x t  satisfy 
 

 
Fig. 1 Various types of interpolation constraints used for implicit modeling 
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( ),  i if∇ x t =0, i=μ+σ+1, μ+σ+2, …, μ+σ+τ       (4)  
where ti is the unit tangent vector of the geological 
domain. 

The tangent constraint does not have the polarity of 
the orientation, but only affects the direction of adjacent 
points and changes the local curvature, so it is well suited 
for constructing trend line constraints in the domain. 

(4) Anisotropy constraints: The anisotropy constraints 
refer to the evaluation of the anisotropy distance by the 
distance transformation at specific locations. The given 
N scattered data points 1{ , } N

i i ifλ =x  satisfy  
ΦT(x, x′)=Φ(||x−x′||T)                          (5)  
where  
||x−x′||T =||(x−x′)·T ||                           (6)  
and T is the anisotropic distance matrix which can be 
constructed via the affine matrix transformation. The 
anisotropy of its three principal directions represented as 
an ellipsoid. 

The main difference between the isotropic and 
anisotropic GRBF is the computation of the distance 
field. Similar to the isotropic GRBF but with a modified 
distance metric by a distance transformation, the 
anisotropic general radial basis function (AGRBF) 
interpolant has the following form:  

1
( ) ( , ) ( ), ,  

N

j j
j

s p s Hω λ Φ′
=

′ ′= + ∈ x
 Tx x x x  N=μ+σ+τ 

                                (7) 
where the new set of weights jω′  are different from ωj 
computed from the isotropic GRBF interpolant. 

The interpolation equation can be obtained by 
acting the continuous linear functions on the radial basis 
function. Similarly, the anisotropic interpolation equation 
can be obtained by acting jλ ′x on anisotropic kernel 

( , ) Φ ′T x x . Similar to the RBF interpolant, using the 
anisotropic GRBF interpolant s(x) and the general 
constraints, the unknown weight coefficients can be 
determined by solving a linear system such as Ax=b. 
 
3 Implicit modeling 
 
3.1 Discrete drillhole 

To construct the spatial interpolation conditions of 
an implicit function, it is necessary to discretize the 
drillhole data sampled from geological exploration. The 
discretization of drillhole data refers to the process of 
obtaining the sampling points of sample segments and 
non-sample segments based on the grade combination of 
drillhole data. The geological domain containing the 
whole drillholes is viewed as a non-Euclidean distance 
field. The sampling points of sample segments and 
non-sample segments can be transformed into on-surface 
constraints and off-surface constraints. Then, the implicit 

function can be formed by interpolating these constraints 
and solving the corresponding linear system. 

During discretization, the distance values of 
sampling points are initially computed via the distance 
along the direction of the drilling trajectory. The 
on-surface constraints are constructed at the two 
endpoints of the sample segments. The off-surface 
constraints (including the exterior and interior constraints) 
are constructed in the sample and non-sample segments. 
Along the drilling track, the sample segments are 
sampled discretely from both ends to the middle to 
construct the interior constraints according to a given 
sampling interval. The initial function values of the 
interior constraints are computed according to the sample 
distance to the nearest on-surface points. To ensure the 
reliability of the solution, at least one sample point 
should be sampled in the sample segments. Similarly, the 
non-sample segments are sampled discretely from both 
ends to the middle to construct the exterior constraints 
according to a given sampling interval. The initial 
function values of the exterior constraints are computed 
according to the non-sample distance to the nearest 
on-surface points. As an example of discretization in  
Fig. 2, the on-surface constraints with zero values are  
red, the off-surface point constraints with positive values 
are cyan and the off-surface point constraints with 
negative values are blue. After the discretization of 
drillhole data, the on-surface and the off-surface 
constraints are added to the interpolation equation to 
solve the implicit function of the orebody model. 

 
3.2 Distance field correction 

During the construction of the implicit model, a 
signed distance field should be formed in the process of 
distance computation, and the implicit function can be 
regarded as a signed distance field function. Therefore, 
the process of orebody implicit modeling can be 
regarded as the process of constructing a signed distance 
field in line with the trend of the geological domain 
using sampling points. 

To distinguish the internal and external field of the 
orebody model, the relationship between the implicit 
function value and the implicit surface can be expressed 
as  

3

3

3

| ( ) 0, , on the surface

| ( ) dist( , ) 0, ,
exterior of  the surface

| ( ) dist( , ) 0, ,
interior of  the surface

  

  
    

  
    

f

f

f

 = ∈


′= + > ∈


 ′= − < ∈



R
R

R

x x x

x x x x x

x x x x x

            (8) 

 
where x=(x, y, z) is a three-dimensional sampling point, 
and dist(x, x′) is the nearest distance from x to the closest 
point x′ on the surface. As shown in Fig. 3, the colors 
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Fig. 2 Discretization procedure of drillholes: (a) Grade combination; (b) Sampling point 
 

 
Fig. 3 Signed distance field of drillholes: (a) Discretized points of drillholes; (b) Signed distance field 
 
show different field values, for which blue denotes the 
maximum negative value and red represents the 
maximum positive value. 

To construct a geological distance more consistent 
with the trend distribution of the drilling trajectory, the 
distance values of two points are computed as the length 
of the drilling trajectory instead of the Euclidean  
distance. In the process of discrete sampling, the cross- 
distributed drillholes tend to generate ambiguity 
constraints with abnormal values, so the distance should 
be modified according to the distribution of 
mineralization field. To verify the distance of sampling 
points, an iterative closest point correction (ICPC) 
algorithm [23] is used to correct the distance, which 
ensures the distance field of the implicit function 
complying with the distribution characteristics of the 
mineralization field. 
 
4 Constraint with trend 
 
4.1 Constraint rule 

The method of implicit modeling still requires   
the guidance from the structural geologists’ expert 
knowledge, including the designation of multiple 
geological constraints. Based on the general constraints 
of the GRBF interpolant, four types of constraint rules 
can be obtained, as shown in Fig. 4. 

(1) Geology trend line 

The geology trend line can be used as an orientation 
constraint to guide the model extension trend of nearby 
domains. Taking the direction of the trend line as the 
tangential direction, the trend line is sampled at a certain 
sampling interval to construct tangent constraints. By 
specifying trend lines in sparse regions, the reconstructed 
model has a tendency to extend along the trend line. 
 

 
Fig. 4 Four types of constraint rules constructed by general 
constraints: (a) Geology trend line; (b) Geology constraint line; 
(c) Geology trend surface; (d) Geology constraint surface 
 

(2) Geology constraint line 
The geology constraint line is discretized according 

to the specified sampling interval, and the discrete 
constraint points are added to the interpolation equation. 
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By reconstructing the implicit surface, the orebody 
model can satisfy the model boundary represented by the 
constraint line. The geological constraint line can well 
control the extrapolation boundary of the automatic 
interpolation model and change the local continuity trend 
of the model according to the geological rules. 

(3) Geology trend surface 
The geology trend surface is constructed by the 

direction sampling (e.g., gradient constraints), but the 
constraints with specific distance values (e.g., domain 
constraints) are not constructed. The stratified 
resampling method is used to resample the trend surface, 
which can control the uniformity of the resample 
placement and the minimum distance between samples. 

(4) Geology constraint surface 
The geology constraint surface represents a local 

surface modeled by other methods, which can be used to 
recover the local implicit surface at the sparse locations 
with incomplete sampling. There are several ways that 
the constraint surface can be converted to general 
constraints. One of the ways is to construct both gradient 
constraints and domain constraints at the sampling 
points. 
 
4.2 Section constraints 

To convert the additional section constraints 
interpreted by structural geologists into the GRBF 
interpolation constraints, the contours should be 
discretized to form domain constraints. To ensure the 
unique solution of the interpolation equation, the 
contours of the interpreted sections should be 
preprocessed to avoid abnormal normal constraints or 
contradictory domain constraints. Firstly, the redundant 
points in given tolerance should be removed, and the 
abnormal segments in the angle tolerance of refraction 
should be cleared. Secondly, in a certain tolerance range, 
the sections are preprocessed to reduce the curvature of 
contours, to build a smoother implicit model. Lastly, the 
normals of the section will be estimated to construct 
gradient constrains or off-surface constraints. The 
off-surface constrains are formed by offsetting the 

contour points along their normal direction [11]. If the 
cutting plane of the section orthogonally intersects with 
the local surface of the orebody model, the normal vector 
of the boundary surface at pi can be computed as  

Sig
|| ||

i i

i i
i i

p
×

= ×
×

p p
p

p p

t c
n n

t c
                      (9) 

 
where 

i
t p  is the tangent vector of the contour at pi, 

ipc is the normal vector of the cutting plane, and Sig
ipn  

is the sign of the normal vector determined by the side of 
the contour. For other cases, the normals of sections are 
estimated via the method proposed by HECKEL      
et al [24]. Moreover, the user is allowed to interactively 
add, remove or edit the local normals at discrete points. 
Then, the unknown normals can be automatically 
interpolated by the given ones. 

The additional section constraints can be used to 
guide the topological connection between drilling holes 
and form the orebody model to satisfy the mineralization 
trend, as shown in Fig. 5. There are many section 
constraints shown as green polylines in Fig. 5(a) and 
geology constraint lines shown as red polylines in    
Fig. 5(c). 
 
5 Fast modeling 
 

The implicit modeling based on GRBF can be 
finally transformed into the solution of the linear system 
Ax=b. It consists of two processes, spatial interpolation 
of an implicit function based on interpolation constraints 
and three-dimensional surface reconstruction based on 
point evaluations. To ensure the rapid dynamic updating 
of the implicit model, in addition to the fast solution of 
the interpolation equation, the implementation of the fast 
evaluation of implicit function is also required. 

To improve the speed of solving large-scale linear 
equations, an iterative method, GMRES, proposed by 
SAAD and SCHULTZ [25], is recommended for 
implementation. This method belongs to Krylov 
subspace iteration, which uses Arnoldi iteration to solve 
the minimum residuals in the subspace to approximate  

 

 
Fig. 5 Implicit modeling from raw drillhole data: (a) Drillholes and geology constraints; (b) Result without manual constraints;    
(c) Result with manual constraints 
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the solution of the linear system. For the problem of 
complex orebody modeling, it is a very effective method 
to solve large asymmetric linear equations, which can 
greatly improve the speed of solving large-scale 
interpolation equations. 

The Marching Cubes method is often used for 
surface reconstruction. The Marching Cubes algorithm 
has some ambiguities when extracting the triangular 
facets of the cubes in the spatial regular data field. To 
resolve the ambiguity, the hyperbolic asymptote method 
proposed by NIELSON and HAMANN [26] was 
implemented. To make full use of the valid cubes in the 
evaluation process, the surface- following method based 
on the Marching Cubes algorithm was implemented. The 
method constructs the initial voxel seed points near the 
isosurface, using greedy voxel growth rules to track the 
isosurface by searching the close cubes. It does not 
evaluate cubes over the whole volume, which can greatly 
speed up the process of surface reconstruction. 
 
6 Results 
 

The anisotropic GRBF method was implemented 
and tested on several non-trivial geological examples. 
These examples contain series of drillhole datasets in 
sparse data environments. To validate the performance of 

this method, the results with the traditional radial basis 
function without constraints were compared. 

For sparse drillhole data with large intervals, the 
reconstructions without constraints are likely to produce 
discontinuities. Therefore, the modeling method still 
requires the knowledge of a structural geologist’s insight 
and this input is made in the form of constraint rules, 
additional sections, and structural anisotropy. The 
constraint rules were constructed to constrain the shape 
of the implicit surface according to the actual geological 
conditions of the drillhole data and the trend of the 
mineralization domain. Figure 6(d) shows the orebody 
modeling results directly based on the drillhole data 
using the traditional radial basis function. It can 
automatically model without additional constraints. To 
make the modeling result more consistent with the 
extension trend of the orebody, the implicit model    
can be dynamically modified by adding constraint lines 
and trend surface constraints (Fig. 6(c)). The results  
(Fig. 6(e)) of implicit modeling of orebody meet the 
interpretation requirements of structural geologists. 

The ore grade shells, geology interfaces or 
structural trends will be represented by the implicit 
functions, which can effectively handle the problems 
encountered in the traditional explicit modeling. Figure 7 
shows the dynamic grade shell models established by  

 

 
Fig. 6 Processes of implicit modeling from raw drillhole data: (a) Grade combination; (b) Discretization of non-sample and sample 
segments; (c) User-defined constraint rules; (d) Result without manual constraints; (e) Result with manual constraints; (f) Compared 
result 
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Fig. 7 Dynamic grade shell models with different cut-off grades: (a) 2% and 3%; (b) 1% and 3% 
 
Table 1 Running time of solution and reconstruction of algorithm on several examples 

Model Constraints Resolution Triangles 
Time/s 

Solution MC PMC SF 

Fig. 6(d) 760 4 17204 1.25 17.87 5.28 1.87 

Fig. 6(e) 881 4 17792 2.69 21.83 7.23 2.13 

Fig. 7 866 10 38016 2.18 223.52 75.72 4.14 

 
raw drillhole data under different cut-off grades, which 
can well reflect the spatial distribution trend of the 
orebody model under different economic indicators. At 
the same time, the orebody model constructed by implicit 
modeling has the advantages of high quality and 
smoothness. It is easy to represent orebody models with 
complex topology and is convenient to perform Boolean 
operations.  

The performance of the anisotropic GRBF method 
mainly depends on the number of constraints and the size 
of resolution. The algorithm was implemented in C++ 
language and tested on a Windows 64-bit PC with 3.20 
GHz Intel(R) Core(TM) i5-3470 and 4GB RAM. Table 1 
lists the timings of the solution and reconstruction stages 
of the algorithm on these examples. 

The implementation runs from a few seconds to less 
than one minute for the examples. The running time is 
dominated by the solution of large-scale linear systems 
in the interpolation stage and the evaluation of sampling 
grids in the reconstruction stage. To test the performance 
of fast reconstruction using the improved method, the 
running efficiency of multiple data sets was compared 
before and after the improvement. Table 1 shows that the 
surface following (SF) algorithm used has faster 
reconstruction efficiency than the traditional Marching 
Cube (MC) and parallel Marching Cube (PMC) 
extraction method. Moreover, as the size of the solution 
equations becomes larger or the reconstruction resolution 
decreases, the performance of the improved algorithm is 
more obvious. 

 
7 Conclusions 
 

(1) Based on the anisotropic GRBF interpolant, an 
implicit modeling method of complex orebody 
conforming to geological rules is proposed, which can 
convert the geological constraints into different 
interpolation constraints and constraint rules. It is not 
based on the grade interpolation but uses the distance 
field to calculate the implicit function by geological 
constraints, so that it can be applied to the structural 
modeling of the orebody. The results show that the 
reconstructed implicit models are guaranteed to be 
smooth, continuous and closed geology surface without 
mistakes such as intersections. 

(2) As the RBF-based method has good 
extrapolation capability, it is very suitable for 
constraint-based modeling of sparse drillhole data. 
Moreover, it is known that the orebody model usually 
has strong local continuity and extension trend along the 
direction of the mineralization area. 

(3) Based on the anisotropy constraints, the 
anisotropic orebody model can be restrained by 
constructing geological trends in different directions 
according to the manual interpretation requirements of 
structural geologists. 
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摘  要：为了根据结构地质学家的经验对矿体形状进行动态控制，基于广义径向基函数插值方法提出一种可以直

接从原始钻孔数据进行矿体隐式建模的方法。发展多种约束规则来动态控制地质趋势，包括地质趋势线、地质约

束线、地质趋势面、地质约束面和各向异性等，均可以转化为插值约束条件。结合约束规则的交互工具，该方法

可以避免基于轮廓线拼接的显式建模方法存在的模型质量差、难以动态更新等缺点，对具有几何边界约束的矿体

结构模型进行建模，简化矿体建模过程。数值试验结果表明，该隐式建模方法可以快速、准确、动态地建立三维

矿体模型。 
关键词：三维地质建模; 隐式建模; 径向基函数; 结构各向异性; 地质规则 
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