MAGNETIC PROPERTIES OF R_3 (Fe, Mo) $_{29}N_x$ (R= Sm OR Y) INTERSTITIAL NITRIDES

Pan Hongge

Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China

ABSTRACT $R_3(Fe, Mo)_{29}N_x(R=Sm or Y)$ nitrides have been synthesized by gas phase reaction under an atmosphere of nitrogen. The nitrides retain the structure of parent compounds. The unit cell volume of the nitride is 4.7% for $Sm_3(Fe, Mo)_{29}N_x$ compound and 5.3% for $Y_3(Fe, Mo)_{29}N_x$ compound greater than that of corresponding parent. Introduction of nitrogenation leads to an increase of Curie temperatures T_C and saturation magnetization, and the $Sm_3(Fe, Mo)_{29}N_x$ nitride exhibits uniaxial anisotropy with an anisotropy of 20.5 T at 4.2 K and 14.6 T at 300 K.

Key words magnetic properties rare earth transition metal compounds gas phase reaction Curie temperature

1 INTRODUCTION

The R_3 (Fe, M) $_{29}$ (R= rare earth; M = Ti, V, Mn, Mo, etc) compounds are newly discovered rare earth iron intermetallics. They almost exist across the whole lanthanide series and crystallize in monoclinic Nd₃ (Fe, Ti) 29 type structure [1-8]. The magnetic properties of a series of $R_3(Fe, M)_{29}(R=Ce, Nd, Sm, Gd, Tb, Dy or$ Y; M = Ti, V, Mn, Cr or Mo) compounds have been studied in great detail [1-8]. The magnetic ordering temperature $T_{\mathbb{C}}$ are remarkably low. Taking R_3 (Fe, Mo) 29 as an example, the Curie temperature T_C ranges from as little as 300 K for R = Ce to 494 K for $R = Gd^{[5]}$. The saturation magnetization os are also lower than that of corresponding 2:17 compounds, for example R₂Fe₁₇. In 1990, Coey et al^[9] have reported that considerable improvements with respective to Curie temperatures and saturation magnetization of R₂Fe₁₇ were reached by gas phase interstitial modification. In this paper, we reported the intrinsic properties of R_3 (Fe, Mo) $_{29}N_x$ (R= Sm or Y) nitrides.

2 EXPERIMENTAL

Ingots of $Sm_3(Fe_{0.966}Mo_{0.034})_{29}$ Y_3 (Fe_{0.969} Mo_{0.031}) 29 compounds were prepared by argon arc melting with starting elements of at least 99.9% purity, with an excess amount of Sm and Y elements to compensate for its loss during melting. The ingots were melted in a war ter cooled copper hearth and remelted at least five times for homogeneity. The ingots were annealed at 1 453 K for 48 h under argon atmosphere, then quenched in water. In order to prepare the nitride, the ingots were pulverized into fine powders with an average size of 10~ 15 \mu m, and then the nitrogenation was performed by heating the fine powder in nitrogen at 100 kPa at 823 K for 2. 5 h for Sm_3 (Fe_{0.966} Mo_{0.034}) ₂₉ compound and 803 K for 2h for Y_3 (Fe_{0.969}Mo_{0.031}) ₂₉ compound, respectively. The nitrogen content was determined from the difference between the mass before and after nitrogenation.

X-ray diffraction with Cu-K $_{\alpha}$ radiation was used to identify the phases present in the compounds and to determine the lattice parameters. Thermomagnetic analysis (TMA) was per-

① Project 59501006 supported by the National Natural Science Foundation of China Received Sep. 25, 1997; accepted Jan. 12, 1998

formed in a low field of about 0.04T in the temperature range from 300 K to above the Curie temperature. The Curie temperatures $T_{\rm C}$ were determined from σ^2 - T plots by extrapolating σ^2 to zero. The magnetization curves were mea- $\mathbf{b}\mathbf{v}$ extracting sample magnetometer sured (ESM) with a superconducting magnet of maximum magnetic field up to 7 T. Saturation magnetization o_s were derived from o-1/B based the magnetization curves. The anisotropy fields B_a were estimated from the extrapolated intersection point of two magnetization curves measured with the magnetic field applied parallel and perpendicular, respectively, to the alignment direction of the cylinder samples.

3 RESULTS AND DISCUSSION

The X-ray diffraction patterns of the $R_3(Fe, Mo)_{29}N_x(R = Sm \text{ or } Y)$ nitrides are shown in Fig. 1. It can be seen that the nitrides retain the structures of parent compounds which crystallized in Nd₃ (Fe, Ti)₂₉ type^[10] structure and the peaks of the R₃(Fe, Mo)₂₉ nitrides shift to a smaller angle compared with that of the parent compound showing that the unit cell volume of R₃(Fe, Mo)₂₉ nitrides have been expanded. The unit cell parameters a, b, c, β and the unit cell volume V of the R₃ (Fe, Mo)₂₉ nitrides and their parents are listed in Table 1. the unit cell volume V is 4.7% greater for Sm₃ (Fe, Mo) 29 nitride and 5. 3% greater for Y₃ (Fe, Mo) 29 nitride than corresponding parent compound. The nitrogen content x is about 3.9 for $Sm_3(Fe, Mo)_{29}N_x$ nitride and 3. 8 for $Y_3(Fe,$ Mo) 29N_x nitride which are similar to that of the $Nd_3(Fe, Ti)_{29}N_x \text{ nitride}^{[2]}$.

Fig. 1 X-ray diffraction patterns for $R_3(Fe, Mo)_{29}N_x(R=Sm \text{ or } Y)$ nitrides

The magnetization as a function of temperature for isotropic polycrystalline samples of $R_3(Fe, Mo)_{29} N_x$ (R = Sm or Y) nitrides are shown in Fig. 2, together with those of the $R_3(Fe, Mo)_{29}$ (R = Sm or Y) parents for comparison. The Curie temperatures T_C were derived to be 704 K for $Sm_3(Fe, Mo)_{29}N_x$ nitride, which is 58. 2% higher than that of the parent and 659 K for $Y_3(Fe, Mo)_{29}N_x$ nitride, which is 75. 2% higher than that of the parent. These results are also listed in Table 2.

The saturation magnetization ${}^{o}S$ of R_3 (Fe, M_0) ${}_{29}N_x$ (R= Sm or Y) nitrides and their parents at 4.2 K and 300 K are listed in Table 2.

Table 1 Lattice parameters and unit cell volumes of R₃(Fe, Mo) ₂₉N_x nitrides (R= Sm or Y)

	.5(1 1 20 1 10		· ,		
Compound	a/ Å	b/ Å	c/ Å	β/ (°)	V/ ų	$\frac{\Delta V}{V}$ / %
Sm ₃ (Fe, Mo) ₂₉	10. 622	8.568	9.738	96. 83	879.92	_
$\mathrm{Sm}_{3}(\mathrm{Fe},\mathrm{Mo})_{29}\mathrm{N}_{x}$	10. 805	8.703	9.870	97.07	921.09	4.7
$Y_3(Fe, Mo)_{29}$	10. 568	8.505	9.672	96. 89	861.86	_
Y_3 (Fe, Mo) $_{29}N_x$	10.713	8. 666	9.839	96. 57	907.40	5.3

Fig. 2 Magnetization as a function of temperature for R_3 (Fe, Mo) $_{29}$ (R= Sm or Y) compounds and their nitrides

Table 2 Curie temperatures $T_{\rm C}$ and saturation magnetization $\sigma_{\rm S}$ of R₃(Fe, Mo) ₂₉N_x nitrides

(R= Sm or Y) compared with those of parents

Compound	$T_{\rm C}/{ m K}$	$\sigma_{\rm S}/\left({\rm Am}^2{}^{ullet}{\rm kg}^{-1} ight)$			
Compound	1 (/ IX	4. 2 K	300 K		
$\mathrm{Sm}_{3}(\mathrm{Fe},\mathrm{Mo})_{29}$	445.0	135.0	107.0		
$\mathrm{Sm}_{3}(\mathrm{Fe},\mathrm{Mo})_{29}\mathrm{N}_{x}$	704.0	152.0	137. 0		
${ m Y}_{ m 3}({ m Fe,Mo})_{ m 29}$	376.0	147. 0	143.3		
Y_3 (Fe, Mo) $_{29}N_x$	659.0	162. 1	106. 5		

The temperature dependence of the $\sigma_{\rm S}$ of ${\rm R}_3({\rm Fe},{\rm M}_{\rm O})_{29}{\rm N}_x$ nitrides and average Fe moments μ are presented in Fig. 3 and Table 3. The increase in $\sigma_{\rm S}$ is attributed to the increase in average Fe moments after nitrogenation. The increase in Curie temperature $T_{\rm C}$ upon nitrogenation may partly be explained in terms of lattice expansion of the nitride which leads to an increase in the average nearest-neighbor Fe-Fe exchange interaction. A theoretical analysis shows that the increase in Curie temperature $T_{\rm C}$ may also be ascribed to the increase in magnetization upon nitrogenation and the decrease in the spin up density of states at the Fermi level $E_{\rm F}$ associated with narrowing of the 3d band [11].

Fig. 4 shows the X-ray diffraction patterns for a magnetically aligned powder samples. It can be seen that the easy magnetization direction

Fig. 3 Saturation magnetization σ_S of R_3 (Fe, Mo) $_{29}N_x$ (R= Sm or Y) nitrides at 4. 2, 50, 100, 150, 200, 250 and 300 K

Fig. 4 X-ray powder diffraction patterns of magnetically aligned samples of R₃(Fe, Mo) ₂₉N_x(R= Sm or Y) nitrides

of Sm₃ (Fe, Mo)₂₉ N_x nitride is uniaxial along [102]. Introduction of nitrogen leads to the occurrence of uniaxial anisotropy in the nitride. The temperature dependence of the anisotropy field B_a is shown in Fig. 5. The anisotropy field

Table 3 Temperature dependence of average Fe moments \$\mu\$ of \$Y_3\$(Fe, Mo)_{29}N_x\$ nitride and its parent compound

Compound	Average Fe moments, µ						
	4. 2 K	50 K	100 K	150 K	200 K	250 K	300 K
Y ₃ (Fe, Mo) ₂₉	1.80	1.77	1.72	1. 64	1.55	1. 42	1. 24
Y_3 (Fe, Mo) $_{29}N_x$	2.08	2.05	2.02	1. 97	1.92	1.86	1.80

Fig. 5 Temperature dependence of anisotropy field B_a of $Sm_3(Fe, Mo)_{29}N_x$ nitride

 $B_{\rm a}$ of Sm₃(Fe, Mo) $_{29}{\rm N}_x$ nitride at 4.2 K and 300 K are 20.5T and 14.6T, respectively. The value of the $B_{\rm a}$ decreases monotonically with increasing temperature. It can also be seen that the X-ray pattern of the aligned Y₃(Fe, Mo) $_{29}{\rm N}_x$ nitride powder is similar to that of the aligned Y₃(Fe, Mo) $_{29}{\rm Powder}^{[12]}$. The easy magnetization direction in the Y₃(Fe, Mo) $_{29}{\rm N}_x$ nitride is of planar type. It is revealed that the anisotropy of Fe sublattice in R₃(Fe, Mo) $_{29}{\rm N}_x$ (R= rare earth) nitrides is of planar type.

4 CONCLUSIONS

In conclusion, the R₃ (Fe, Mo) $_{29}$ N_x (R = Sm or Y) nitrides have been synthesized by gas phase reaction under an atmosphere of nitrogen. The nitrides retain the structure of parent compounds. After nitrogenation, the Curie temperature $T_{\rm C}$ and saturation magnetization $\sigma_{\rm S}$ strongly increase, the easy magnetization direction change from planar to uniaxial for Sm₃(Fe, Mo) $_{29}$ N_x nitride, but the sublattice Fe remain easy plane.

REFERENCES

- 1 Collocott S J, Dunlop J B and Dovism R L. In: Proc of the 7th Int Symp on Magnetic Anisotropy and Coercivity in R-T Alloys, July, 1992, Canberra, 437.
- 2 Yang F M, Nasunjilegal B, Pan H Y et al. J Magn Magn Mater, 1994, 134: 298.
- 3 Arnold Z, Kamarad, J, Mordlun L *et al*. Solid State Commun, 1994, 92: 807.
- 4 Fuerst C D, Pinkerton F E and Herst J F. J Magn Magn Mater, 1994, 129: L115.
- 5 Pan H G, Yang F M, Chen C P *et al*. Solid State Commun, 1996, 98(3): 259.
- 6 Kalogirou O, Psycharis V, Ojoka M *et al*. J Appl Phys, 1996, 79(8): 5830.
- 7 Han X F, Wang J L and Pan H G, J Appl Phys, 1997, 81(8): 5170.
- 8 Han X F, Yang F M, Zhu J J *et al*. J Appl Phys, 1997, 81(7): 3248.
- Coey J M D and Sun H. J Magn Magn Mater, 1990, 87: 251.
- 10 Yang F M, Nasunjilegal B, Pan H Y et al. J Magn Magn Mater, 1994, 135: 3298.
- 11 Wood J P, Patterson B M, Fernandv A S et al. Phys Rev B, 1995, 51: 1064.
- 12 Pan H G, Yang F M, Chen C P *et al*. J Magn Magn Mater, 1996, 161: 177.

(Edited by Peng Chaoqun)