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ABSTRACT The kinematically admissiable velocity and strain rate fields were established to extru-
sion and drawing through the elliptic die profile. The curvilinear integral and the integral as a function
of the upper limit were used respectively in obtaining the contact friction and plastic deformation pow-
ers. Furthermore, an upper bound analytical solution of deforming force was got for the plane strain

drawing and extrusion through the elliptic die.
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1 INTRODUCTION

To the problems of drawing through a
wedge shaped die(the contour line of the die is
a straight), corresponding upper bound solu-
tions were discussed in Refs. [1—3].

However, when the contour line of the
profile is not a straight one but a complicated
mathematic curve, getting an analytical solu-
tion will be even more difficult. The approxi-
mate solutions with the slip line and the trian-
gular velocity field were reported in Refs. [4—
5].

The purpose of this paper is to establish
continuous velocity field, as the same method
in Refs. [1—3], for the drawing and extrusion
through the curved dies.

Then emphatically, the curvilinear inte-
gral and integral as a function of the upper
limit will be used in seeking for possibility of
analytical solution. It seems that about plane
strain drawing through the elliptic die, no
more analytical solutions in continuous veloci-
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ty field have been reported.

2 EQUATION OF THE DIE PROFILE

The deforming zone of plane strain draw-
ing and extrusion through an elliptic die is
shown in Fig. 1. With Von Karman’s basic as-
sumptions, that is, the direction of the ap-
plied load and planes perpendicular to this di-
rection define the principal directions, and the
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Fig.1 Plane strain drawing through
an elliptic die
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drawing stresses do not vary on these planes.
In Fig. 1, the deformation is in plane strain,
with no change in the width. Only upper-half-
plane of deforming zone above horizontal sym-
metric axis is illustrated.

For drawing, the prescribed velocity at
exit of deforming zone is v., corresponding
thickness is & = 2 BB'; let velocity at entry be
vy, the thickness be H = 2 AO, and the origin
of the coordinates be at the entry on the hori-
zontal axis. Then, the equation of elliptic pro-
file of the die forY = A./2is:

Lyt + (D — (Bye = 2y

2 2 2
2 <y<fo<ax<t

or: LA + (H? — k)2 = L*H? (1)

From formula (1), the thickness of cross
section at the distance « from entry is;

2 2 2 2 2
hI:JLH—(LH—h)x )

In formula(2), whenz =0, h,=H; =
L, h, = h. The k_satisfies the condition at en-
try and exit of deforming zone, and L is the
projection of the contact arc on the horizontal
axis.

3 VELOCITY AND STRAIN RATE
FIELDS

From Fig. 1, for unit width in deforming
zone the volume constancy satisfies the follow-
ing equation;

vy,*h=vyH=uv,+h,=C (3)
Where Cis the fixed rate flow per second in
unit width. For drawing, C = v,h; for extru-
sion, C = vy H ; in the deforming zone, Cis in-
dependent of z. the v.is horizontal velocity on
cross section h, at the distance x from entry.
From Egs. (2) and (3), we can get:

C LC

v, = 7 =
h, VLIIHE — (H? — IO
From Cauchy equation, or geometric Egs. , &,

(4

duv,
= EPR we can get:
- c du,
E = — = —
: 7 dx

. LC(H? — h®)x
\/[LZHZ _ (Hz __ hz)xz:]3
Noticing Karman’s assumptions, when i # j,
&, = 0. From Canchy Eqs. , we have;
o J.éydy _ J . LC(H* — h®)x dy
J[LZHZ _ (Hz _ hZ)Izja

_ LC(H? — h®)zy

«/[:LZHZ _ (HZ — hZ)rzjs
B IC 6

VL'H? — (H* — k) x?

Substituting x = 0 into the second formu-
la in Eq. (6) yieldsv, =C/H =vg;and x =L
into it, v, = C/h = v,. Substitute y = 0 into
the first formula in Eq. (6) yields v, = 0. So
Eq. (6) satisfies the velocity boundary condi-
tions at the exit, entry and horizontal sym-
metric axis. Notice that in formula(5) €, + ¢,
= 0, Egs. (5) and (6) are kinematically ad-
missible velocity and strain rate fields.

)

v, =

x

4 DEDUCTION ON THE FORMULA
OF DEFORMING FORCE

Referring to Ref. [3], the internal power
of deformation for unit width is:

W, — sz- N %é,-,-é,-,dv = 2k J e, dzdy

x

kj%r LC(H? — i)z

o VTLPH? — (H? — KD L2
Notice y = k./2, and upper limit of above

integral is still a function of x, so it is just an

integral as a function of the upper limit. Sub-

stituting(2) into it yields;

LC(H? — B?)zdx J%

xdy

0

L
W, = 4kJ dy

0 «/[LZHZ _ (Hz _ hz).rz]3 0
o 4kJ‘L C(H? — h®)zdx
- OZELZHZ— (Hz—hz).l‘z]
_ CkJ‘I _ d[LZHZ _ (HZ _ hZ)l_Zj
- 0 [LZHZ—(HZ—hZ)xzj
=— CkIn[L*H? — (H?* — h¥)z* )t

Lh? h

~ 2Ckn 2 %)

In metal forming, # = H/his called coef-
ficient of elongation; % is the yielding shear
stress of deformed metal. Formula(7) is the
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internal plastic deformation power of unit
width for drawing through the elliptic die.

Substituting £ = 0 into the first formula
in(6), then, at the section OA, v, = 0, so a-
long the section OA at entry no shear power
will be consumed. Substituting x = L into the
first formula in(6), along cross section BB’ at
exit we have.

L:C(H? — h?)y

Uy = «/[LZHZ — L*I* +Lzh2)]3
_ CWH? — h)y
== = I; (8

It shows that the shear power must be
consumed along section BB’ at the exit. No-
tice that, in Fig. 1, right side of the section
BB’ is rigid region, so along its tangential di-
rection:

C(H* — h%)
= Lhe 4
Thus, the shear power along cross section at
exit for unit width is;

Ws=j |Av,| + & - dS
S
55 C(H? — B?)
- ijo R

h/ZC(HZ _ hZ)
N ij S FAR
C(H? —h*) 1
— 9%C = (?yz)g/z
EC(H? — h?
- ©
From Fig. 1, we know that the elliptic arc

|Av, | = |0 — o,

~~
AB is the contact interface. Let the friction
stress on it be 7; = mk; the tangential velocity

of deformed metal along the arc ABis v,. Since
the die is stationary, along the tangential di-

rection of interface AB.
Ay, | = |0 —v,| = |v,]
Therefore, the total friction powers consumed

along the upper and lower interfaces for unit
width is.

W( = ZJ TflA'U,|dS
N

A8
- zj mk|v,|dS (10)
0

Noticing both friction stress 7; and veloci-
ty of metal v, are on the tangential direction of
the interface, the above integral is the curvi-

linear integral along the elliptic arc AB. The
modulo of the tangential velocity vector v, at

the interface is | v, | = V/vi4v:, Taking the

following equation

_h,  VL*H* — (H?* — kD!
T2 2L
into the first formula in Eq. (6), we can get:
a C(H? — h¥)x
'Uy|y=7z - ZELZHZ —(H? — hZ)IZ:] (a)

Substitute (a) and the second formula in (6)
into the following formula, then rearrange it:

|vl| = 'UE—+'U§

[« LC
«/LZHZ—(HZ—hZ)xZ
4 —C(H*—h%)x
2L H:— (H*—h*)x*]
_ LC
vLI?H*— (H*—h?) 1
(H*—hHzx
. 1+ 2
{ [zL VLIH? — (H*— k) 2?

2

Nk

—_——
o=

(b

h
From(2), since y = 7’

dy _ _ (H?* — h®)x
dr ZL «/LZHZ—(HZ——hZ)IZ
From Eq. (¢), we have;

dS =,/1+ (j—z)zdx
x

(H* — Dz
= 1+ *d
«/ [2[, VIIH? — (Hz—hz)xZ:I *
(>
Substitute(b) and (d) into(10), and notice S

=0,x=0;s=AB, x = L, then:

(c)

L
0 /LZHZ _ (Hz — hz)xz
(H* — ) x
- {1+ J*}dx
[ZL «/LZHZ _ (Hz _ hZ)IZ
L
= kaLCJ dz
0 «/LZHZ _ (Hz _ hZ)Iz
L 2 p2Yy 2
4 2kaJ (H h)ztdx
o4l J[LZHZ _ (HZ _ hZ)IZ].’i

(e)
From Ref. [6],

J. 1 dr = 1 arcsin(x —_a)
Ve e J=a Ve
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(a < 0) H? — k2
Hence, the result of the first integral > arcsin(, / g )]
term in(e) is given by mkC(H? — h?)
2kaCJL dz 2Lh
o VI?H* — (H? — h*)x? n 4mkL*C — mkC (H* — R?)
2L VH? — h?

2mkLC . H* —h*
= marcsm(z TI‘IT ) |0

= _2mhkLC arcsin ( H* — b ) €))
I W T

From Ref.[7],
jr‘zdx __ T
v (ax® + ¢)? a var® + ¢

1 . —a
+ — (xAl— ) @O
N _aarcsmx p a )

The result of the second integral term in
formula(e) is given by
2mkC(H? — h*)?
4L

L 2
°J dx
0 «/[LZHZ— (H2~h2)12]3
_ mkC(H? — h?)*
o 2L
[ x
(HZ_hZ) \/LZHZ—(HZ—hZ)IZ
+ 1
_(HZ_hZ) /Hz_hz

2 2
» arcsin(x ,/ %I—ITh )%

_ mkC(H?* — h*)? 1
o 2L h(H? — h?)
1
(H? — h?) VH? — Rh?
2 12
+ arcsin ( Iih(z—h )]

:ka(HZ—hZ)Z 1 1

2L h oz — 12

. H? — p?
» arcsin(, | g )] (g)

Substituting the results of integration (f) and
(g) into the formula(e), then rearrange it

W, — 2mkLC in( H? — h? )
= ——marCSIH HZ
mkC(H? — h*) -1 1
+ 2L [T o Tz — 12

2 __ 12
« arcsin , /HH*ZII (10)

The formulas (10)' and (10) are the
curvilinear integral results.

For drawing, with the upper bound theo-
rem, let applied external power at the exit per
unit widthbe Wy =o0,cv,ch=0,C=W, +
W, + Wy; substituting(7), (9) and (10') into
it and rearranging, the analytical solution to
the ratio of drawing stress to 2k for elliptic die
per unit width is given by:

oy H H? — p? m(H?* — h?)

A Sy S Y 4
AmL? — m(H?* — h?)

+
4, VH? — h?
2 _ 12
csint (/P2 a1

For extrusion, let the exerted power at entry
be given by W, =0, cvy+H =0, C=W, +
W, + Wy; substitute (7), (9) and (10') into
the formula and rearrange it, then anelytical
solution of the ratio of plane strain extrusion
stress to 2k for elliptic die per unit width is:

o, E H? — h? m(HZ _ hZ)
%Nyt e T
4 4aml?: — m(H?* — h?)
AL VHT — R?
2 __ 12
- sin~'( E—ﬁz—h—) (12)

In the above formulas, H, h and L are given
parameters of the die(see Fig. 1); m is an ex-
perimental constant called constant friction
factor. It can be measured or calculated by
suggested following formula®®’.

m= I+ 42— Y71 a3
where  fis the slip friction coefficient; A =

(H + h)/2.

Joining A and B in Fig. 1 yields the de-
forming zone ABB'O for plane-strain wedge
drawing. It can be seen from Fig. 1 that the
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relationship between
shaped and elliptic dies is given by :

L = Ah/?2 tana (H)
where a@is the semi-die angle for the corre-
sponding wedge drawing.

Example; A sheet of metal with initial
thickness of 2. 54 mm is to be drawn to 2. 286
mm respectively through a wedge shaped and
an elliptic die with included angle 30°. If an
average value for the coefficient of friction is
0. 08, calculate the value of o;/2% needed to
complete the operation.

Solution: Using Eq. (13) and noting that
h =2.413mm, Ak =0. 254 mm, f =0. 08, L
=0. 254/2 tan 15°=0. 474 mm, then we get
the value m =0. 082. Substituting m =0. 082,
L =0.474, H =2. 54mm, h =2. 286 mm into
Eq. (11), the value of 6;/2k for the elliptic die
drawing yields:

o/2k = 0. 264

However, for plane strain wedge drawing
using Eq. (8-33) from Ref. [ 9], the upper-
bound value of 6;/2k to the same reduction is:

o;/2k = (1 + m/sin2a)e + tana/2

Substituting e = In(H /h) = 0.1054, m =
0. 082, a = 15° into above formula yields ;

o¢/2k = 0. 257

It can be seen that the relative error be-
tween them is only:

A= (0. 264~0. 257)/0. 264=2. 6%

geometrical wedge-

5 THE LIMITING DRAWING RE-
DUCTION

For metal plastic processing, when o; =
2k, the maximum possible drawing stress is
reached. Based on the condition, the corre-
sponding maximum drawing reduction from
(11) is given by:

H  H' —h*

H m(H? — h?)
In 5+ =%

h T 4k
gmL? — m(H' — k)
AL VI — R

HZ_hZ
T)<1 (14

+

+sin” ' (

6 CONCLUSIONS

(1) With Karman’s basic assumptions,
the kinematically admissible velocity and
strain rate fields in rectangular coordinates for
extrusion and drawing through elliptical die
satisfy the formulas(5) and (6) in this paper.

(2) To the above fields, an upper bound
analytical solution of drawing and extrusion
stress is obtained by the curvilinear integral
and the integral as a function of the upper li -
mit. The solution is the function of yielding
shear stress k&, friction factor m, die parame-
ters H, hand L.

(3) The limiting drawing reduction satis-
fies the formula(14).

(4) Formulas(11), (12) and (14) can be
references for calculating deforming forces in
extrusion and drawing through the elliptic die
profile.

(5) The integrations in the paper can be
for references in researching deforming force
through complicated die profile.
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