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ABSTRACT

Based on the orthogonal complement likelihood function, the estimation formula for

variance components was derived, and the Helmert’s estimation formula was proved to be a special form

under some assumed conditions. Finally, as an application example, the results solved by the above two

formulas to a triangulateration geodetic network were shown.
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1 INTRODUCTION

In order to obtain accurately the most
proper weights of different types of observa-
tion, the posterior estimation methods for
variance components corresponding to those
After thorough
research, the theory and approaches of esti-
mation for variance components have been

have been usually applied™’.

perfected?” 7). By summarizing the presented
variance components estimation formulas, it is
found that only Helmert’s estimation formula
is strict, and other different estimation formu-
las are approximative ones based on that.

It is well known that, when observation
errors as the stochastical variables are normal-
ly distributed, the maximum likelihood esti-
mation for variance of unit weight is biased,
but the maximum orthogonal complement
likelihood is unbiased™. Based on this func-
tion, the author of this paper has derived the
maximum orthogonal complement likelihood
estimation equation for variance components.,
and proved that the Helmert’s formula is a
special one of those under some assumed con-
ditions. It is shown by a triangulateration
geodetic network that Helmert’s solution of
variance components is only a couple of posi-
tive real solution in the maximum orthogonal
complement likelihood estimation equations

for variance components.

2 HELMERTS ESTIMATION FOR-
MULA FOR VARIANCE COMPO-
NENTS

The general linear model with two types
of observation which are assumed to be uncor-
related is given by

V=AX—I (1
vl =l
or (vz =la)X 1y, @
with
D, 0
D(1>=D=(O‘ D)=Q,a%+Qza% 3
2

and QIZ[{;; OO) ; Q.= €3]

where

0 0
o vl
A, A,, A, respectively denote the
knownn X t, n; X t, n, X t (where n equals n,
+ n, ) designed matrices, in which the first
matrix is assumed to be of full column rank,
X the ¢ X 1 vector of unknown parameters, [,
l,, I, respectively the n X 1, n, X 1, n, X 1
vectors of observations, V, V,, V, respectively
then X 1, n;, X 1, n, X 1 residual vectors of
observations, D, D,, D, respectively the n X
n, n; X n;, n, X n, diagonal variance matrices
for 1, 1,, 1,, p» p,respectively then, X n,, n,
X n, primary weight matrices for 1,, I, which
is assumed to be. positive definite, ¢, 6% re-
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spectively the variance components of I, and
1,.

Usually, before least squares adjustment
is applied to observation equation(1) or (2),
D, and D, are unknown. Thus P, and P, aren’t
obtained by strict computation, but are only
estimated by the posterior methods from re-
peated adjustment computations.

Assuming the variance of unit weight to
be 6%, then if 62 = 62 = 62, it is shown that the
primary weight matrices I’;, P, are the most
proper. The least squares estimator vector of
X can be expressed as

X=N"'A"Pl (5)
where N=A"PA 6)
. (P, O)
with P—(O P, (D

Substituting (5) into (2) yields
V’.:(AlNﬂAlTPl_Il)ll

+ANT'AJP,l, €:))
VZZAzN_lA’{-Plll
+(A2N71A;P2_12)lz (9)

where I,, I, respectively denote n, X n,, n,
X n, identity matrices. By considering to (3)
and (4), according to the law of error propa-
gation, we can get Egs. (10)~(13) from (8)
and (9)
DWV)=(P'—2ANAT+
ANTN N 'ADel+
AN'N,N 'Ald} aom
D(WV,)=A,N"'N, N 'Ajs*+
(P;'—2A,N'AT+

A N'N,N'AD o} an
with N,=ATP/A,; N,=AlP,A, a1z
and N:N1+N2 (13)

By considering E(V,)=0 and E(V,)=0,
from the expectation theorem of quadratic
forms, we have

EWiP,V)=t (P, D))

=[n,—2tr(N 'ND+
tr(N"'N D)ot +
tr(N"'N,N7'N,)a? (14
EWiP, V) =tr(P,D(V,))
=tr(N"'N,N 'N,)oi+
[n,—2tr (N 'N,)+
tr(N"'N,)*]o} (15)
If letting coefficients in (14) and (15) be

Sl:nl—Ztr(N71N1)+tr(N71N1)2 (16)
S;=n,—2tr(N"'N)+tr(NT'Np)?* QA7)

So:tr(NilN]NilNz) (18)
W,=ViP\V, a9y
WZZV;P2V2 (20)

then the estimation equations for ¢%, ¢% from

(14) and (15) become
(Sl SO Wl
S, S, w,

which is the Helmert’s estimation equations

o

2D

%

for two variance components. If the solution
%, a30f (21) don’t equal 62, then the new val-
ue for the weight matrices of I,, I, may be
computed from o% and oZ respectively, a repeat-
ed adjustment computation is needed until ¢
= 062 = ¢%. When ¢ = 6% = 02, the following e-
quality may be proved from (14) and (15)
EW'PV)=EWVIP,V)+EW;P,V;)
=(S,+8,4+2S5,)0}

=(n—t)ot 22>
Thus, the unbiased estimator for o? is
r
&§=V ry (23)
n—it

3 MAXIMUM ORTHOGONAL COM-
PLEMENT LIKELIHOOD ESTI-
MATION FOR VARIANCE COM-
PONENTS

When ! is a normally distributed observa-
tions vector, the likelihood function of I with
unknown parameters vector X and unknown
variance components ¢}, o3 is given by

LU/X, ¢ty 62)=(2n) "*(detD) "2 X

exp[—U—AX)" D' (I—AX) /2] 24

If the observations vector [ is trans-
formed™, then the orthogonal complement
likelihood function can be obtained

LW/c6%, o2)oc(detDdetN) 2 X

exp[—U—AX)'D'"U—AX)/2]

= (detDdetN) Y2exp(—V'D™'V/2)  (25)
with

N=A"D"'A
VY-l o 0)(,4,)
= A 0 0,:P, | A,
=N,0?+ N,o? (26)

Taking the natural logarithm on both
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sides, (25) leads to
InL{/a%, 62)oc— (1/2)In(detD)—1/2
In(detN)—(1/2)V"D"'V (27)
From (3) we have
D*]
VID 'V =7, VD) (0‘ D;(‘)) 5;)
=VIP\Vior*+VIiP, V0,2  (28)

To maximize L (l/6?, %), its partial

derivatives with respect to ¢% and o5 are equated
to zero. At first, differentiating with respect
to ¢¢ on the both sides of (27) and equating
that to zero, we can get

Anl /6%, o%) dn(detD
dnl(/d%, D _ /90 ( )

do? dot
dn(detN)
2
N'D'V
do?
=—tr(D7'Q))/2+
tr(N'N ) so; */4+
VTPIVIGFI‘
=—n0;2/2+tr(N"'N)+
o, */2+VIP\Vo*
=0 29
Expanding Nin a Neumann series at No;?

_+_

and taking the zero-and first-order terms of
the series expansion yields
N~ = (N,o7? + N,o;%)7!
= [(Noy? + (N0, % +
N,6,2 — No,; ) ]!
= Nl — N '6}(N,6;%* +
N,o,2 — No )N 'o?
= 2N7'¢? — N"'N,N 7 '¢? —
N7IN,N 7 lglo,? 30
Substituting (30) into (29) and reducing,
we get
S10¢ + Se6\o, =W, (31)
Similarly, differentiating with respect of ¢} on
the both sides of (27) and equating that to ze-
ro, we get
S,0,0,7F + S,07 = W, (32)
where S,, S,, S; were respectively given by
(16>, (17>, (18). In (31) and (32), we ap-
ply % and 0% to express the maximum orthogo-
nal complement estimator of variance compo-
nents o and o} to distinguish from their
Helmert’s estimators a? and o2,

Writing (31) and (32) into the matrix
form yields
S, AV W,
Seat/at S, w,
If assuming that the following equality
were right
d'/of = o7 /ot =1 (34)
then (33) would become (21). But among the
repeated adjustment computation, (34) is not
always correct, thus (21) is an approximative
maximum orthogonal complement likelihood
estimate equation for variance components o}
and o%. If 0¥ = 67 = a2, from (33) we may de-
rive (22) and (23). Thus 6, 6/ are also unbi-
ased.
By changes of variables

o

) (33)

o}

6, = 6% and 0, = o (35)
(33) becomes
S.,0,0, + S, — W8, =0 (36)
50(9% + 810102 - Wzal =90 (37)
Solving (36) for §, ytelds
S8
0, = W, —S.0 (38)

Substituting (38) into (37) to eliminate
0, and reducing, we have

0 4 6,67 + b,0, + by = 0 (39)
with 6, = S———?g“:‘ 5. S‘??:lz
p = ZSW W,
Sg - SOSISZ
b — — W%Wz
’ SS - SOSISZ

which is an equation of 3-th order with one
variable. From (39) and (38), we can obtain
three couples of solution for &, and 8,, in which
only positive real solutions are proper. If
there is no couple of positive real solutions
with (39), it is shown that primary weight
matrix is not proper and should be renewed.

4 AN ADJUSTMENT EXAMPLE

Fig. 1 shows a pentagon(in a plane) with
one center point, in which the points 1 and 2
are horizontal control stations with known x,
y coordinates. In order to obtain accurately
the x, y coordinates of other four points, all

the fifteen possible angles and nine possible
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Fig.1 The Triangulateration geodetic

network

distances had been measured. The prior vari-
ance of the angle observation is g5 = 3. 763 6

(s?) obtained by the angle closing errors of
triangle, and the prior variance of distance ob-
servation 6% =1. 276 9(cm?) by the closing er-
rors of reciprocal observations. If assuming
that the variance of unit weight 62 equals o3,
that is
o} = 0% =3.7636(s?)

then the primary weights of angle and distance
observation respectively are P;;, =1 (fori =1,
2+++, 15 ) and Py; =2. 947 4(s*/cm?*)(for j =1,
2, =y 9). The changes of variance compo-
nents are obtained from equations (21) and
(38), (39) through iterations. These results
are given in Table 1 for making a comparison.

where ¢ denotes the number of repeated ad-

Table 1 Changes of variance components solved by the two kinds of equations

Helmert Maximum orthogonal complement likelihood

. . é

¢ ot 5 '
1 3 1 2 3

1 2.6578 1.9980 2.2456 —10.6669 3.1679 2.5223 3.1313 —22.1476
2 3.7727 3.7433 3.7763 —3.1143 5.8140 3.7861 4.6359 —40.1194
3 3.7645 3.7615 3.7632 —14.3187 5.8082 3.7636 4,6067 —40.0801
4 3.7637 3.7634

justment computation. Table 1 shows that be-
cause the primary weights of angle and dis-
tance observation is proper, among the repeat-
ed adjustment computations there are always a
couple solution for &, and 8, which are positive
real (see the data underscored).

One can also see the results solved by the
two methods are all converged to given o3.
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