Vol.5 No.4 TRANSACTIONS OF NFsoc Dec. 1995

AN IMPLEMENTATION OF A MODEL
MANAGEMENT SYSTEM®

Chen Xiaohong
Department of Business Administration
Central South University of Technology, Changsha 410083
Yasuhiko Takahara
Tokyo Institute of Technology

ABSTRACT The model management system of actDSS, based on the general systems theory

(GST) has been discussed. Although it employed the model integration approach, it was different from

the conventional approaches. This paper presented the model management system in the following way:

a concise introduction of GST and actDSS, discussions of functional model, model description language,

MIE, process support, and finally demonstration of an application to a practical problem.

Key words general systems theory(GST) model management model description language (MDL)
model integration environment (MIE) decision support system (DSS) menu system
annual production planning

1 INTODUCTION 2 STRUCTURE OF actDSS

The authors have engaged for several The actDSS is a DSS generator based on
years in the research and development of a UNIX system. Fig.1 shows its hardware ”
DSS, called actDSS, which adopted a model
integration approach (MIA) for its model (user >
management. An excellent summary of MIA
in Ref. [1] showed that model representations
for model integration can be classfied into
three schools, namely structured modeling, ul
logic modeling and graph grammar. This pa-
per, however, presents another scheme of
model representation called general systems DSS architecture
theory (GST) and shows a model integration ith layer in Prolog
environment (MIE) implemented on it.

The mathematically general systems theo-
ry (MGST) has been developed to lay a solid WS software

5th layer MMS

3rd layer Prolog interpreter

foundation for systems engineering in gener- ond layer c }ir:;uxage

al®7%), and hence the MGST must be a good X- Window system
framework for the model integration approach

where various models and various paradigms lst layer UNIX WS

of modeling must be handled in a uniform

way. Fig.1 Hardware structure of actDSS

® Supported by the JAPAN government research foundation; Received Jul. 18, 1995

» 152 -

TRANSACTIONS OF NFsoc

Dec. 1995

structure. Every object is defined as a window
and the access to the object is realized as an ac-
cess to its window. In this sense actDSS is in-
trinsi cally an object oriented system.

The 3rd layer of Fig. 1 shows one of the
most important features for the model manage-
ment system (MMS) of actDSS. The Prolog
interpreter of the 3rd layer was designed and
developed specifically for actDSS. The Prolog
is an extention of the conventional Prolog and
most of the basic predicates necessary to de-
scribe functions of a DSS generator are written
in C and Prolog can call them as its subrou-
tines.

The 4th layer, DSS architecture, is the
other important feature of actDSS. The archi-
tecture is really an operating system of the
DSS, and is called actOS. All basic functions
and the control mechanism of actDSS are de-
fined here in the Prolog. Since a user can mod-
ify actOS rather easily, we claim that actDSS
is a customer-made system.

The 5th layer consists of basic utilities of
system including the MMS. Their control
structures are also written in the Prolog.

All user models and the utilities are inter-
nally represented in Prolog forms. When they
are to be executed, they are first linked to ac-
tOS dynamically and then their executions are
carried out by the Prolog interpreter. The link
operation is called load. Fig. 2 shows the load
operation of actDSS. Therefore, a specific
DSS is always a large Prolog program although
its size and structure are dynamically changing

Due to this special execution structure dy-
namic model creation, model deletion and
model modification are realized.

Fig. 3 shows the process structure of
actDSS. An input of a user is accepted by the
window manager (WM) of actDSS. If the in-
put is simple, for example, a request to the
spread sheet, the WM processes the input di-
rectly and outputs a response. If it is compli-
cated, the WM sends an interrupt signal and
the control of the system to actOS. The actOS
then selects a suitable subsystem (or subpro-
cessor) , for instance, the MMS and requires it
to process the input, and after outputing a re-

sponse it returns the control to the WM, then
waits for the next input from the user.

We will discuss the model management of
actDSS in the following steps:

(1) Model description language (MDL)
of actDSS and its internal representation

(2) Integration environment of actDSS.

3 MDL AND ITS INTERNAL REPRE-
SENTATION

The MDL of actDSS is a functional lan-
guage. As will be shown, this fact makes it
possible to yield the state space representation

Prolog programs (user model ’
r core of actOS ’

utility components

compile

load

user models

™~
™~

utilities

N]

Prolog user
L\mo‘wl/

Fig. 2 Load operation

Prolog interpreter

. Response
User input Window manager
Machine
Process
Interrupt mechanism /
Activity
information
Process handing
routine R
esponse
\\po
Customer
made
State of actOS
Activity
Intormatlon

Fig. 3 Process structure of actDSS

Vol.5 N2 4

An Implementation of A Model Management System

» 153 -

of model easily and prepare the model integra-
tion environment of actDSS. Fig. 4 illustrates
a model written in it. Actually the language it-
self is quite powerful in the sense that it can
simulate the Turing machine®, or it can de-
scribe any algorithm in principle.

The MDL has three important features
for model management: (1) It is translated in-
to a Prolog form internally; (2) It dose not
have type declaration; (3) It can specify the
message variables to a model.

Let us discuss these features in detail.

An MDL program is internally translated
into a Prolog program. Suppose we have an
MDL statement like

v= f(Us...0,)
where v, v,,..,and v, are variable names.
Let us denote the above equation by S . Then,
internally, it is translated as

v(¥): — v, (X)),..,v.(X), f’ Xiseons
X, X),Yis X,!.
where f*(X;,...,X,,X) succeeds if and
only if X = f(X,,...,X,).

Let us denote the translation by @,(S).

Then, the execution of the program is
done in the following steps.

Step 1: The MMS of actDSS asserts ini-
tial data as facts.

Step 2: The Prolog interpreter evaluates
the predicate f(X,,...,X,, X) using the as-
serted facts v, (X,),...,v,(X,) and yields the
value Y (= X) of the variable v to the MMS.

Step 3: The MMS asserts v (Y) as a new
fact and asks the interpreter to evaluate anoth-
er new variable, that is, Step 2 is executed.
If, for instance, v,(X;) is not asserted yet in
Step 2, the interpreter tries to evaluate the
variable v, as its subgoal. But if the evaluation
of the variables is done in an appropriate or-
der, such a case never happens, which will be
discussed in the next section.

Since the Prolog is used for the internal
representation of an MDL program, we can
have at least two advantages:

(1) The MDL becomes a non-procedural
language. Then order of statements is of no
importance.

(2) An MDL program can include Prolog

programs as subroutines in a natural way.

Let us consider the second advantage.

Suppose f(xy5... ,x,) is used in an MDL
program. Then, it is translated into the form

(X)), .y 2. (XD, fr (X, .. ,X,,Y)

as mentioned and therefore, f can be spec-
ified by the Prolog rule of

[T (Xy,...,X,, Y):—(body of the rule)

where X,,...,X, and Y are Prolog vari-
ables.

As Fig. 4 shows, Prolog rules are directly
listed in an MDL program surrounded by the
special control symbol “/%” and “%/”. Inter-
nally, there is no distinction between the MDL
part and the Prolog part. This feature makes
the MDL powerful and flexible.

Let us consider the second feature that
the MDL has no type declaration or a variable
is typeless. This feature also comes from the
fact that the Prolog is used for the internal
representation of an MDL program.

In Fig. 4, the variables “a”, “b”, “c” and
~_sol” of _sol=Ipsolver (a,b,c) represent,
in reality, a matrix, a vector, a vector and a
vector, respectively although they are not de-
clared as such. The type of a variable is deter-
mined by the situation how it is used. This is
crucial for the dynamic (or on line) model in-
tegration where no information is given about
the types of variables to be linked beforehand.

A very useful feature of the MDL for
model integration is that it can be used to
specify the message variables to and from a
model explicitly. As will be discussed in sec-
tion 4, every model is finally represented as an
input-output relation (IORep) in actDSS and
the message variables of the model are input
and output variables. The variables to be dis-
played as inputs and outputs are those and on-
ly those which are used in MDL statements,
except a hidden variable whose name has “_”
as its initial letter like sol” and which is not
displayed in the IORep, (A user or other mod-
els can not access to a hidden variable). This
feature is very convenient, for instance, for
solving the so called overlapping variable prob-
lem'). What we have to do is to introduce a
function consisting of overlapping variables in-

“

. 154 - TRANSACTIONS OF NFsoc

Dec. 1995

//lpsolver. m

//this model calls the linear prog. solver written in C

//a=matrix ; b=vector ;c=vector

//problem ¢ * x—>max;a * x<=b;x>=0

// _sol=[X,c % X] where X is the solution __solis a
hidden variable

__sol=Ipsolver(a,b,c)

//get X=sol from __sol

sol=project {__sol,1)

//get ¢ * X=performance

perform=/if sol=[] then “infeasible” else project (_sol,
2)

//get coeff. of sales from objpara. s
__salesC=vec(objpara. s,[1,2,1 W50

//get sales w. r. t the solution

sales=if sol=[] then 0 else sum (sol* _salesC)

//get coeff of taxes
__taxesC=vec(objpara.s,[2,2,1,5]

//get taxes w.r.t the solution

taxes=if sol=[] then () else sum(sol* __taxesC)

//get coetf of quantity

__quantityC=vec(objpara. s, [3,2,1,5D

//get quantity w.r.t the solution

quantity=if sol=[] then 0 else sum(sol* __quantityC)

//start of Prolog program

/%

/*call LP-solver* /

/* (A, B, C) = LP problem; Y = (solution,
performance) * /

Ipsolver (A,B,C,Y):— !,

procC(“Ipsolver”,[A,B,C1,[X,P]),

Y:= [X’P];

%/

Fig. 4 Lpsolver.m

to an MDL program and then the necessary
variables are represented in the IORep in the
typeless form. The MDL has many special
functions as other MDLs do. Typical ones are
"gal” and ”var” functions. The ”gal” function
is a difference operator. For instance, the
MDL statement .

sales =gal (sales)
means a difference equation

sales (n+1)=sales (n)

A dynamical system is
actDSS in this way.

As will be discussed later, “var” function
is used for data transfer, communication and
control among models. The format of the
function is:

described in

var (model name, variable name).
A model can get a data from another mod-
el or assign a data to it using a “var” function.

4 MODEL INTEGRATION
RONMENT OF actDSS

ENVI-

actDSS is based on GST to construct its
model management. That is, the target of the
model management is a realization of the hier-
archy system of Fig. 5 and hence a model inte-
gration approach has to be adopted. Further-
more, every model is recognized as an input-
output system and the interacted system. Fig.
1 is a model of a model integration, and when
a model by the MDL is compiled, it is trans-
formed into a state space representation.

Suppose an MDL model 7 is given by

m= {v, = f.‘('Un"' 9'U.'1|i = 1,k)}

(self- organization)

d, s xo

user -

(goal and structure
modification) T DSS
m

adaptive scheme -

w

(parameter
modification) I
SLP
SLS
*
m
X0 y
DEnv _— p

DB
(real
world)

N~

Fig. 5 Hierarchical functional model of DSS

Then, the internal representation of m,
Int (m) is given by

Int (m) = (process rep, structure rep,
IORep>.

The process rep is the Prolog translation
of m which is discussed in section 3.

That is, process rep = (@, (fi(vy, -

Vol.5 Ne.4

An Implementation of A Model Management System

* 155

vil))li =1, "'k}

The structure rep represnets the depen-
ndency relations among MDL variables of m .
Each MDL statement yields a predicate “node”
as follows

v = f;(v.‘n ceey Ui) node (v;, ['Uin
. vil:l)-
Then
structure rep = {node (v;y [Vis +..>

vaD]i=1, ..., k}.

A model is displayed on the screen of a
computer as IORep where formulation is a lit-
tle bit complicated. Let V.. be the set of vari-
able names of m. Let V be the set of values
which MDL variables take. V consists of inte-
gers, reals, vectors, matrixs, symbols and
others. Let

Link={ ® , var ({mname),{varname))}
where @ is the empty and mname and varname
indicate a universal set of model names and a
universal set of variable names, respectively.

In actDSS it is assumed that the depen-
dency relation is loopfree or the structure rep
can be expanded into a tree (or more generally
a lattice structure). Then, basically, the leaf
variables of the tree are inputs, variables spec-
ified by the difference operator “gal” are states
and the remaining are outputs. In this way,
V ..me can be partitioned as:

Voame = Taame U Soame U Oname
where I ome s S name and Opame correspond to input,
state and output variables, respectively.

Then the IORep of m is

IORepC (Lnume XLink X V)" 0 (Spame X {
PIX V)0 (Opane X{P}I}XV)®
where A”* is the free monoid of a set A and
“0” is the concatenation operation.

The set Link represents link relations a-
mong variables. How a link ralation is set up
will be discussed later. Let us consider a case
where an input variable v; of a model m, is
linked to a variables v, of a model m,. Then,
IORep of m, has the following component with
respect to v; ;

(v,, var(m,, v;), evaluation (var (m,,
v,)))
where evaluation (var(m,, v,)) represents
the current value of v, of m,.

Since the values of state and output vari-
ables cannot be determined by other models,
the set corresponding to Link is { P} for
them.

The structure rep is used not only for
classification of the variable types but also for
determination of a proper execution sequence
(Refer to section 3). By expanding the tree
structure of the structure rep using the depth
first strategy, we can have a linear ordering
for V ume. It can be proved that if the evaluation
of variables is done in that order, in step 1 of
section 3 the Prolog interpreter never fails to
get asserted facts v, (X)),

It should be noticed that the concept of
structure representation of models is also ap-
plicable to dependency relations among mod-
els. If input variables of a model m depend on
variables of models m,, ++, m;, then the de-
pendency relation is expressed by node (m,
[m,y »==y, m;]). We also assume the structure
representation among models is loopfree.
Then, expanding the tree structure into a lin-
early ordered form as mentioned above, we
can get a correct execution sequence. This fact
is more crucial than determination of the exe-
cution sequence of variables.

The representation of the IORep of a
model is made on the spread sheet of actDSS.
actDSS has one big spread sheet and a portion
of it is allocated to each model for its IORep .
The allocation is managed by the MMS. The
important feature of the spread sheet of
actDSS is that its data structure is exactly the
same as that of the Prolog or ”exp” and hence
models can make access to and control the
spread sheet directly.

Since the spread sheet is flexible, we can
write almost every thing in its cell. The link
mechanism and the dynamic data exchange a-
mong models are realized by this feature with
the help of the direct access capability. Sup-
pose a user wants to link a variable v,0of a mod-
el m, to an input variable v, of a model m;. In
this case, as mentioned above, the link is real-
ized by assigning the function var(m,;, v;) to
the value part cell of v, of the IORep of m,.
When m, is executed, var(m,, v,) is already

. 156+ TRANSACTIONS OF NFsoc

Dec. 1995

evaluated due to the calculation capability of
the spread sheet and the evaluated value or the
value of v, is for v, and hence the execution of
m, is done keeping the link relation to m,;. The
function var(m,, v,), in general, can be typed
into the cell by the keyboard. In actDSS,
however, the link is realized by the mouse op-
eration also. If a user clicks the mouse on v, of
m,, an interrupt signal is sent to actOS (refer
to Fig. 3). actOS interprets the signal and
waits for the next mouse input. When the user
clicks the mouse on v, of m,, actOS writes the
function var(m;, v;) in the cell of v,.

In section 2 the multi-layer structure was
introduced as a hierarchy concept of GST. An-
other hierarchy is used in the model integra-
tion. The actDSS allows a user to organize
submodels in a hierarchical way. Section 5
shows that submodels, genobject. m, blpdata.
s, genconst. m, Ipsolver. m and kb. m are
grouped as one composite model, ¢-model
called lpca. ¢. Then the user can treat the
group of submodels as one model. Even a ¢-
model itself is recognized as an input-output
system. By executing the ¢-model, the sub-
models can be executed automatically in the
proper sequence identified by the system by
using the interaction structure as mentioned
above. In this fashion submodels can be
grouped and groups themselves can be grouped
yielding a hierarchical structure.

5§ APPLICATION

This section shows the case where actDSS
is applied to a practical problem, the imple-
mentation of a specific DSS for annual produc-
tion planning decision of a nonferrous compa-
ny. The original system was implemented us-
ing the conventional tools (FOXBASE, For-
tran and Turbo-Prolog)™ and used in Chang-
sha nonferrous company of China.

Due to the shortage of the space we will
show a summarized form of the implementa-
tion on actDSSM%,

The decision problem is an extended prod-
uct mix problem. Suppose we have five prod-
ucts.

These products will be indexed 1, 2, **,
and 5. Letx = (x(1), - ,z(5)) be a decision
variable referring to the production quantity of
the product 1 to the product 5. Then, the final
form of the problem formulation is as follows:

Objective;

total sales income= Z.c(1,i) X x(f) i €
{1, * ,5}

gross profit= Z,(2,i) X z(@) i € {1, +-
»5}

total production output= Z;,c(3,7) X z(i)
i € {1, * ,5}

Constraint ;

Salk,) X x@) <bRYEE {1,
€ {1, «-, 5}

The decision problem is a multi-objective.
But in order to solve the problem by using an
LP algorithm, the linear weighted sum method
is adopted for the problem. Let the weight
vector be
w= (w(l), w(2), w(3)).

Then,

Integrated objective:

S2w(j) Xc(j, i) Xxz(i) - max j€ {1,
ves ’3}’ 1 € {1, oo ,5}

All of the five constraints are not neces-
sarily used for decision making. The choice de-
pends on situations and is expressed by a vec-

tor s= (s(1), - ,5(5)) where
1 if the i-th constraint is used

5} ¢

s(@) = .
otherwise

Then, Working constraint;

(Zia(k, i) X 2(G) <bk)|stk) =1, k €
{1, =+ ,5}

The user is supposed to have desired val-
ues for the three objectives which is specified
by a vector d= (d(1), d(2), d(3)).

The three vector w, s and d are controlled
by the user. The matrix A = [a(%&, i)], the
vector B= (b(k)) and the matrix C = [c(%,
i)] are not directly given by the user. There
are six tables which are called databases, aec.
s, arm. §, apm. §, amd. s, apc. s and aop. s.
For instance, aec. s=(a(1,1), - ,a(l, k),b

(1)). The first five databases specify A and B
and the last one does C. Similarly, w, s and d
are given by databases, ado.s, acc. s and adv.
s, respectively. The family of the databases is

Vol.5 Ne 4

An Implementation of A Model Management System

* 157 -

the user’s problem image of teh real world and
he manipulates the problem through this im-
age. The image is transformed into an LP
problem by the DEnv of section 4. The DEnv
consists of genobject. m, blpdata. s, genconst.
m and the family of the databases, where the
tables are implemented as s-models on the
spreadsheet of actDSS and genobject. m and
gepconst. m are written by the MDL. The
components of the DEnv are connected by the
mechanism mentioned in section 4 and the re-
sult, an LLP problem, is sent to lpsolver. m and
finally kb. m. The lpsolver. m is modeled by
the MDL which calls an LP algorithm program
written in C. The solution is sent to kb. m.

The kb. m or the knowledge base subsys-
(1) evaluate the obtained
(2) amend the parameters of the
databases to realize the desired value d. The
knowledges are obtained from domain experts
and, expressed as a set of production rules in
Prolog which is called by the MDL part of kb.
m. If the solution is not satisfactory, the sys-
tem modifies the parameter values according to
the rules.

The user, who corresponds to the self-or-
ganizing system of Fig. 2, modifies d and s to
get a more satisfactory solution.

The submodels genobject. m, blpdata. s,
genconst. m, Ipsolver. m, and kb. m are inte-
grated into one complex model (¢-model)
whose name is lpca. ¢. This is indicated by the
rectangle enclosing the submodels in the modle
space. If a user executes lpca. ¢, the submod-
els are executed in the order, genobject. m—
blpdata. s—>genconst. m—>lpsolver. m—kb. m.
The order is found by the system on the link
command execution as mentioned in section 4.

tem is used to:
plans;

The whole structure of the annual produc-
tion planning DSS is saved as a task “app”
which is indicated by the menu statement
“loadtask production planning app”. The task
saving is easily done by executing the com-
mand “wconfig” of the model box by the
mouse.

When an end user wants to use the sys-

tem, he first selects the “menu. mn” from the

model box; then the first menu “menul. mn”
appears on the screen. Then if he selects
“menu. mn” of the first menu for the produc-
tion planning DSS, the second menu “menul.
mn” appears. If user selects “loadtask” from
menul. mn, then the whole configration of the
production planning system appears. The user
choosing commands of each level of menus,
the system can be guided and performed step
by step.

6 CONCLUSION

Ref [1] proposed 7 aspects of the problems
about model integration. Although it is inter-
esting to examine how the problems are treat-
ed in the MMS of this paper, we cannot pre-
sent discussions about it due to the shortage of
the space. It is our conclusion that the prob-
lems of schema, process, models and data,
and models and solvers are well or reasonably
addressed to by the MMS.

REFERENCES

1 Dolk, DR. Decision Support System, 1993, (10):
1—8.

2 Mesaroric M, Macko D and Takahara Y. Theory
of Hierachical, Multilevel
Press, 1970.

3 Mesaroric M and Takahara Y. General Systems
Theory: Mathematical
Press, 1975.

4 Wymore A W. Model Based Systems Engineering.
CRC Press, 1993.

5 Bossel H. Modeling and Smulation.
1994).

6 Lee Jae Kyu. Knowledge-assisted Optimization
Model Formulation UNIKOPT, Forthcoming in
Decision Support Systems.

7 Ramirez R, Ching C, St Louis R. Decision Support
Systems, 1993, (10): 1—10.

8 Takahara Y, Shiba N. In: Proceeding of CAST
Conference at Ottawa, 1994, 113—118.

9 Chen Xiaohong, Li Yizhi. J Cent-South Inst Min
Metall (in Chinese) 1993, 24(5). 56— 60.

10 Takahara Y and Chen X. Office Automation.
1995, 16(2): 92—95.

(Edited by He Xuefeng)

system. Academic

Foundation. Academic

(Vieweg,

