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A NEW ORTHOTROPIC YIELD FUNCTION

DESCRIBABLE ANOMALOUS BEHAVIOR OF MATERIALS'
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ABSTRACT

A new non-quadratic orthotropic yield function describable anomalous behavior of materials
has been put forward, which like the yield function raised by Hill recently . has no limitations pos-
sessed by the previous similar functions. It is simple and clear, especially, all the materials con-
stants involved can be determined using only unaxial tension test. Therefore, this function is
more convenient to use. The application of this function to 1100 aluminium sheets indicates that
the 1100 aluminium alloy is a material possessing anomalous behavior and the reasonable power
value of its yield function is about 1. 68. Most deviations between the calculated values using this
function and the experimental data of flow stresses are smaller than 1 percent.
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1 INTRODUCTION the sheet metal: o is the flow stress in equibiaxial
tension state (o, = . ) ; 1 is the flow stress in pure
Hiil" s orthotropic quadratic yield function shear parallel to the orthotropic axes (/= 15%); «

overestiinated the influence of anisotropy of materi- and / are constants determined by o 7 and the flow

als and could not be used for those materials possess- stresses in uniaxial tension state. It is obvious that

ing so- called *anomalous behavior”. Since the the above formula is not simple. especially since at

1970s there have been some non- quadratic yield least tests under three stress states must be made to

functions advanced successly , and up till now four determine the material constants involved in it.

functions among that can be used for these materi- Thereby it is not convenient for use.

als. However the yield function advanced by Bas- The Fourth stated yield function was proposed

sani ®" and the case IV of new yield function by by Monthcillet ¢t «f recently © . but the material
Hill in 1979°% could only be used for the case that

the sheet metal is planar isotropic. In order to acco-

constants involved in their function were deter-
mined by assuming that the material anisotropy is

modate the planar anisotropy of a sheet metal . Te- four-fold symetric. Thus, it is difficult to say

cently Hill put forward another yield function ' that. the planar anisotropy of a sheet metal can be

22
ial + 7 " + (ﬁ_)m
T

correctly reflected. Moreover, their function can

g im .
AN not yet be used for the case of planar isotropy.

Cn 2 1[7 2(1(”‘7' . ’7:_3)

+ ot + o 2 THE NEW YIELD FUNCTION AND
+ 0oy — o) eos20 Jeos20 = (20" ITS CORRESPONDING EQUATIONS
where ¢, and o, are the two in-plane principal
stresses; ) is the angle between the direction of the 2.1 The Form of the New Yield Function
iarger principal stress and the rolling direction of
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Adopting both the characteristics of the yield
function proposed by the author'®- and the yield
function proposed by Montheillet et al, the form of
the newly proposed yield function in this paper is;

f = (ot ao)? ]2 +h] (o, —0,) 2 br2 1"

=og7 D)
where z and y stand for the two in- plane
anisotropic principal axial directions and are gener-
ally believed to be the rolling direction and the
transverse direction of the sheet; m is the power val-
ue of the yield function; ¢, a, & and b are anisotrop-
ic parameters; o, is the effective stress. For conve-
nience we can take the flow stress o, in unaxial ten-
sion along the rolling direction of the sheet as o, ,
then we have:.

c+ h=1 2

Therefore, the material constants needed to be

determined total four.

2.2  Corresponding Flow Rule

2.2.1 The Flow Rule in the Anisotropic Princi-
pal Axes Coordinate System

Taking the yield function as a plastic potential
function and using Druker’ s axiom, we can obtain
the flow rule corresponding to the yield function.
de, = mdi{c(o, + ao,)[ (o, + as,)?]™ 7]

+ ko, — o[ (0, — o) + bri B2
de, = mdi{ca(o, + ao,)[ (0o, + ag,)* "~ 22

— (o, — o[ (o, — 0,)% + b ] 22
de, = — (de, + de,) 3

=— mdi{c(l + @) (o, + av,)

X [(o, + ao,)?]™ 22}
dy., = mdabht,,[ (0. — 0,)? + b1}, | 22
= mdiog ! (4)
deg, is strain increment of sheet thickness;

de, = mdAo!
where
de, is effective strain increment; d/ is a positive coef-
ficient related with strain hardening level.

From equation (4), we have.

mdi = de, /o ' = de /oy ! (5)

As for the effective stress o, , from equations
(1) and (2), we have.

o, = 0y
= {c(o; + as)?]"*
+ W[ (o, — 0,2 + brd 2 (6)
2. 2.2 Flow Rule in the Principal Stresses Coordi-
nate System
Adopting the above definitions of ,, ¢, and #
and using X to express the ratio of 7./, , i.e.

Y=o/o0 (o0 > a9) (7
then the familiar stress transformation formulas
and strain transformation formulas can be written
out as;

o, = o,co8’0 + o;sing()

l+/(

= ( 4!

— X
5 cos20) o,

o, = osin®0 + o,co80

= (I —;_X _ g j(COSZU)U. - (8
1, =~ (02 — o,)sindcos¢
= (I — XsinZH)o
— 5 0o,
de, + de
de, = ———
3 2
de, — de
+ gTdéycosZ(} + ;dy,ysm20
des = de, + de, [€))
2
de, — d .
— %00820 — %dy,ysm2()
dy, = (de, — de,)sin20 — dy,,cos20

Substituting equation (8) into equation (6),
we have .

g, = 0y
1 "
= E[(-A'“ + kB" (1 — 1) V"o, 10)
where
A= (I + 0l + a) + (1 — 01 — a)cos2()L
an
B = 2(cos?20 + —sm 220y 2 J

Substituting equation (3) into equation (9),
and introducing equations (4), (8), (10) and
(1,

and rearranging, we have.

2Tcam — hpn(1 Hym]

= T T (L weosan a1 < aBe (1 2w 1o
2edn « hpm(y w0
:r[(l ) (1 - a)eos2i]am 1 Ay 7ym ydez
Tedm - " Fym e 1) w
- = L{l(hl (-l 11).—1/'“)' T d{/
Ledm o a1 - )70 Mgy
T el - o Am e (E - DYAB - Z(1 ) Veos26])sin20
(12)
Because de, is positive, the sign of the last for-
mula of equation (12) is determined by dv». In

addition for the cases of # = 0° and # = 90°,
dyv,. = 0, the last formula of equation (12) be-
comes an infinitive, so de in these cases cannot be
determined from dy;» .

2.3 Formulae of de, Expressed by  Stram
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Increment Components

From equation (3), we have:
de.+de, =mdic(1+a)[ (0,4 ao,)2 ] 12

X {[dex—de,—}%'z(de,+de,)]2
+(2d}’t,)2}1/2
b

=mdA2h{ (0,— )2 bt} J D2
Substituting equation (6) into equation (4),
and replacing the stress items by strain increments
using the above equation, and rearranging, we
have .

1 de, + de m/2Cm- 1)

1+ a
1 de, — de | — ade, + de, ,
+ /ll/(m—l)l:( 2 t — )?

1+ a 2

2
+ (dlzy) Jrezcm=10 ) 1y (13)

It can be seen that when ¢« = 1 , and de, and

de, are principal strain increments( dy,, =0), i.e.
when the sheet metal is planar isotropic, equation
(13) reduces to the equation of case IV of the new
yield function raised by Hill in 1979.

Using the strain transformation formula, equa-
tion (13) can be transformed into a formula ex-
pressed by de,, de, and dy,» or principal strain incre-
ments.

2.4 Determination of Material Constants

2.4.1
For the case of uniaxial tension, r = 0. Sub-

Determination By Plastic Strain Ratio

stituting * = 0 into equations (12) and (11), and
according to the definition, the plastic strain ratior

iS;
U+ — A — a)ecos20 A" 1 — kB (1)
T 2¢(1 + a)A"! '
A=+« + (1 —weos20 (7~ =10) (lla)

Substituting ¢ = 0, 45, 90° into equation
(14) and introducing equation (2), we have;
ca —h 1
S Fo O+
c(l 4+ )" — hB™*
2¢(1 + )™
c(l +ad — (1 — )’
N 2¢(1 + a)”
ca" b —h
T+ e !
c(l4+a7') — |
c(l + Dam !

Tg =

Tz = —

From the first formula of equation (15), we

have .
_ 1
O+ o0 4 7o)
Substituting equation (16) into the third for-
mula of equation (15) and rearranging, we have:
et To + a(l 4 7p)
“ - argo + 1 + 790 an
If m = 2, from equation (17) we have a =
To/Tgo .
step calculating method, and the initial value of «
can be taken to be r4/7g .
From the second formula of equation (15),

¢

(16>

If m £ 2 , we can obtain a using a step by

we have;

(1 4+ )"l 4 275) 2w
L 1 —ec¢ ]
Therefore, for a certain m value, we can cal-

b= (18)

culate the values of @ , ¢ and b on the basis of the ex-
perimentally measured values of 7o, 7y and 7q .
For the cases of planar isotropy, i.e. 70 = 73
= 14, = 7 , from equations (16)~ (18) we have
e=1/[200 +m],
a=1,b=1
2.4.2
The above material constants can also be deter-

Determination By Flow Stresses

mined using flow stresses. But, in this case where
none of plastic strain ratios is used, at least one ex-
perimental datum of flow stresses that can reflect
the normal anisotropic behavior of the sheet metal
is necessary to be used besides those data of uniaxi-
al flow stresses, because the latters cannot reflect
the normal anisotropy. The former may be the
flow stress of a sheet metal under uniaxial compres-
sion state along the sheet thickness or equibiaxial
tension state.

For uniaxial tension tests, substituting o, = oy
and 7 = 0into equations (10) and (11) and rear-
ranging, we have.

Tu —

R e /rJL'¢)\‘_>//"7)4”[i R 1cos220 — bhein22)m 211 m (]9)
When # =45° and 90°, we have.
(oy/oe)™ = ca* + h =1 — (] — )
200/, — (1 + @™ + b * 5 (@A)
= (] + )"+ (1 — )b [

For equibiaxial stress tension tests, substitut-
ing 7 = | into equations (10) and (11), and using
o, to express equibiaxial tension flow stress, we
have.

(oo/o)" = (1 4 a)" 2n
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From equations (20) and (21), we have;
a= {1 — I:] — (00/1790)"'](] =+ a)™)
=+ Coo/a)" "
¢ = (oo/o)™ /(1 + )" -

(22)
(200/05)™ — (1 4 (1)"‘]2".. ’

b=1L I —

Here the step by step calculating method is al-
so used to calculate « , and then calculate ¢ and b .

2.5  Check on the Usability of the Yield Function

Substituting equations (18) and (16) into the
second formula of equation (20), we have.
Qoo/o)™ = 21 + "' (1 + 7¢3)

=+ (23)

It can be seen that when the sheet metal is pla-
nar isotropic, i.- €. 7o = 755 = T4y = 7. « = | and
09 = 015 = 09, m May be an any number deter-
mined by the experimental data, thereby, this func-
tion is usable.

Substituting equation (16 )
(21), we have.

(on/o)" = (1 + 1) /(1 4+ )" !
= (1l + /2!

Hence, for those materials with » < |

into equation

21
. under
proper m values, equation (2-1) can fit the cascs of
a./og > 1, consequently , this yield function is us-
able to materials possessing'anomalous behavior”.

2.6 Determuation of Power |'alue m

From equation (23). we have,
201 + 7ry) Ty

T o "o

Hence, for certain experimental data. mand «

200 - -

(23)

m = In{

can be calculated by combining equations (25) and
(17). But, the calculated results using this equa-
tion are greatly influenced by errors of individual
experimental datum. The practice proved that the
better method is to calculate i values by regression
analysis using a large number of experimental
data.

It should be noted that it is difficult for r value
to have an accuracy higher than +0. 1, as pointed

7

out by Kusnierz -, which means that for the mate-
rials with 7 < 1. 0 . the errors of 7 values are gener-
ally larger than 10% . Therefore. it is not appropri-

ate to calculate m values completely depending on r

values; and the m values should be determined by
means of the flow stresses and the total level of r
value 1, = (70 + 215+ ro) /1], just like the fol-
lowing example.

For the materials with planar isotropy, equa-
tion (25) becomes an infinite, thereby, the m val-
ues should be calculated using equation (2.1). i.e.

m=1In[2C1 4+ ) ]/In(204;/0y) (25a)
3 APPLICATION EXAMPLE

Take the 1100 aluminium sheet described in
ref. [5] as an example, whose related properties
are listed in Tables 1 and 2. In Tables | and 2, ¢
= 2/0+/"31In({,/t)]) . The samples with different
thickness were cut and rolled out from « same cold-
rolled sheet of thickness ¢, .

According to the test method described in ref.
[5]. although ¢ 5~ ¢, , the deformation levels under
the same ¢  be identical. In Table 2 ap, and o, are
the flow stresses of the shect metal under the planc
strain tension state of # = 0°, de, = O and # = 90°.
de, = O respectively. The flow stress is o, under uni-
axial compression state along the sheet thickness.
According to the assumption that the spherial stress
tensor does not influence the yield state of materi-
al. 0. may be adopted as the flow stress o, of the
sheet metal under equibiaxial tension stress state.

Table 1 Experimental data of
r Ty T Iy
0. 00 0.77 1. 08 0.75 0.92
0. 26 0. 60 0.91 0.78 0. 80
0.52 0. 59 0.85 0.69 0.75
Table 2 Parameters involved in o = o, + A¢
7 iy iz . Ty, .,
. MPa ol.1 18,3 53.9 S6.1 62.2 65.0

AN MPa 82.6 8.9 83.1 79.5 89.8 9I.1
1 0,172 0,181 0. 147 0. 123 0.108 0. 375

In Table 1 » values without consistent change
rule indicate that these experimental data are not
all very accurate. Therefore this paper adopts equa-
tion (22) to determire the values of ¢. «and ) us-

ingsome m - values. and calculate the r., - values
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from these values. That m -value by which the cal-
culated 7., -value is in keeping with the experimen-
tal data was taken as the reasonable m -value for
this deformation level, see Table 3.

Table 3 Calculation of reasonable m value
of 1100 aluminium sheet

3 0 0. 26 0.52

m 1.70 1.674 1.60 1.70 1.671 1.60 1.70 1.688 1.60
rep 0.96 0.92 0.81 0.84 0.80 0.70 0.77 0.75 0.64

From Table 3, it is reasonable to take the
mean of 1. 674, 1. 671 and 1. 688, i.e. 1.68, as
the general m value of of 1100 aluminium sheet.
This value is 12 percent larger than that given by
Montheillet et al .

Whether the above results are reliable can be
examined by comparing the experimental data and
the predicated values of plane strain tension flow
stresses.

Assuming that ¥, is the ratio of two principal
stress ratio in the case of plane strain tension, and
according to the condition de; = 0, from the sec-
ond formula of equation (12) we can obtain;,

[ 4+a)— (1 — a)cosZO][%(] + a)

+ (1 — a)cos26 "' — hB" = (
Then assuming

p— hB"
T el + @) — (I — a)cos20]
1+ %, v
:[171(I+a)+(l — a)cos20] (26)
the %, value solved from equation (26) is
HL=1—
20 + )
2
pleeb— (1 — a)eos20 + 1 + «a 27

(26)
(11), then substituting equation (11) and equa-
tion (27) into equation (10), and rearranging,

Substituting equation into equation

we have;.
UP
p
prim- o (] — a)c9524/+ | + T (98)
(b 4 @) eP™ ™ Y+ k(4cos?20 + bsin?20)m 2 1w
Substituting # = 0° and 90° into equation

(28) respectively, we can obtain the predicated

values of o, /o, and apg/ao , whose relative devia-
tions compared with the experimental data are list-
ed in Table 4. It can be seen that it is appropriate
to take m = 1. 68 , and under this condition, most
relative deviations are smaller than 4. 0 percent,
except a few are larger than 5. 0 percent.

Table 4
predicated and experimental data of

Relative deviations between the

plane strain tension flow stresses

€ 0 0.26 0.52

m 1.68 1.50 1. 68 1.50 1. 68 1. 50
a 0.82514 0.8460 0.8510 0.8682 0.8855 0.8986
¢ 0.3110 0.3466 0.3193 0.3559 0.3218 0.3596
b 5.0110 5.0727 4.7635 4.8111 1.6222 4.6620

Y% —312 —4.95 —3.92 —5.82 —2.82 —1.82
Nes - 3071 6.26 —5.47 —7.91 —1.00 -—6.10

4 CONCLUSIONS

(1)The yield function proposed in this paper
is appticable. It can not only be used for common
anisotropic materials, but also can be used for mate-
rials possessing anomalous behavior. Moreover,
this function is the most simple, universal and con-
veniecnt function of its kind.

(2)The 1100 aluminium sheet belongs to ma-
terials possessing anomalous behavior, and the pow-
er value of its yield function is about 1. 68.
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