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ABSTRACT

A mathematical analogue of interactive mass transfer in some electrochemical processes has

been considered. A programme has been developed which calculates thermal and electrical phe-

nomena in high temperature electrochemical devices. with the influence of magnetic fields being

taken into consideration.
Key words. mathematical analogue

mass transfer

electrochemical process

1 INTRODUCTION

As is known, in many electrochemical
systems there occur complicated processes in-
volving mass transfer and electrical charges.
Studying these processes plays a decisive role
in analyzing the effciency of many techno-
chemical devices. One of the most general
expressions for the mass flow J, of the ¢ -th
component in a mixture has the form!'l,
Dgrade, + V' o0l 1)
Thus, in formula (1), the mass flow

J, = o —

consists of convection, diffusion and migra-
tion components. If there are other physical
processes (except for diffusion and electric
current ). The expression for the migration
current,

Jmige = o0 B = pzegrade (2)
will be more complicated. This paper consid-
ers mathemactical analogues for computing
the electrical field intensity £ and migration
flow, respectively, in a three- dimensional

(1) Manuscript received April 7, 1993

casc in association with some physical pro-
cesses accompanying mass transfer (namely,
thermal and magnetic fields).

2 ANALOGUE FOR CALCULATING
ELECTROMAGNETIC FIELD WITH A
TEMPERATURE GRADIENT

If the electrical field intensity is due to
electrical and thermal causes only, the for-
mula describing it can be presented in the
formt2!.

B = j/o + agradT (3)

Thus. for calculating F it is necessary
to solve the equation system of thermal and
electrical fields together. In this case the
thermal current density f and the electrical
current density ; are given by the formu-
lael?’,

[ = (¢ | agradl)) — AigradT (4)

j = — oagrad? — ograde (9)

From the definitions ( j and T ) it
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should be noted that the interrelation be-
tween j and I through thermal and electrical
fields will be taken into account in equations
and boundary conditions. At the inner
boundaries of the region the analogue will de-
- scribe the Peltier, Seebeck and Thomson ef-
fects?],

The analysis and the calculations of in-
terrelated thermal and electrical processcs
have been made in a one- dimensional
case!**1 and in a two-dimensional onet®:*),

It is known[? that in describing process-
es taking place in the presence of the exter-
nal magnetic field the formulation of the
symmetry principle for kinetic coefficients,
which underlies the formulae (3) ~ (5)
changes. In this case kinetic coefficients are
dependent on magnetic field strength. Con-
sidering only this linear relationship, instead
of (3)~(5) we obtaint?!,

E=j/o+ o\JT + R[H X j|+

NH X NVT] (6)
[=(p+al)j— iNJT +-NT[H X j]+

L1l X \/T] (M
JH ORI X j]=—0oVp —

oaN\/T — oN[ 1 X /T] (8)

The addend R [ H X j] describes the
Hall effect (the influence of magnetic fields
on electric ones); N [/l X N/T] is the
Nernst effect (the influence of magnetic
fields on the thermoelectromotive force );
L[ H X N/T]is the Leduc-Rigy effect (the
influence of magnetic fields on heat conduc-
tivity ) ; NT[ H X )] is the Ettingshausen ef-
fect (the influence of magnetic fields on the
Peltier effect).

Substituting equations(7)and (8) into
the conservation laws

divli=jF (9)

div y=10 (10)
as did as ref. [ 2 ], neglecting the second or-
der members connected with I/ we get the
system of equations

div (o (T)N @) = — div(e(T)a(THN/T
—aRj . )+ [jx ]
XN (aR) — o N j«N/T
. (11)
div(ATINT) = — j+ j/a(T) + T+ Ve
+ NT ) o j+ Lj /T
— (1/0T) « \/T
X (d/dT) (o NT?)
[Jo~ 1] (12)
In deducing equations (11) and (12)
Maxwell’'s equation was assumed to be valid

rot/f = (13)
Thus. the present analogue only takes
account of the magnetic field which is

caused by the current flowing in this region.
If the circulation effects on heat and electrici-
ty transfer are taken into consideration, the
equations are stiil more complicated ;
div(a (TN @) = — div(u(T)a(THON/T)
+ div(uo (T)[w X 1]
—oRj )+ [ X H]
X N(uRY — o Nj o N/T
(14)
div(A(TIN/T) = pe,w s /T — J o j/u(T)
T Ty Na+ NT)-
) e NJT - (1/aT)
X (d/dT) (o NT?)
[Jx 1] -\/T (15)
If v and 2 do not depend upon tempera-
ture. instead of (14) and(15) we get the sys-
tem of equations.
Ap = ulll «w — we+j) —divie\/T)
— Ry~ 4+ X H]«\/ER
— N NST
AT = pe, oI T/a — J jfoi
+Tj e Na/r— 1/(AT)d/dT)
(NTEY[ ) X H ] « /T
+ NJATj e j+ L/ay«NT (17)
If all the coefficients mentioned above
are constatns. for calculating @ and J we

(16)

have the following analogue.
Ap=u(H 0w —w-+ ) — alT

— Rjej— Nj )T (18)
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AT = pow « TT/a— j+ j/ok
— N[ X H]«N/T/4
+ NTy - j/a+ Lj«N/T/A (19)
The magnetic field is calculated by in-
troducing the magnetic vector potential A

Il = rotA/u (20)
on the basis of solving the equation

rot(rot A/p) = (21)
or(in case of a homogeneous medium)

ANA = grad div A — u) (22)

3 STATEMENT OF THE PROBLEM

As an analogous problem, consider the
problem of investigating the interactive elec-
tromagnetic and thermal fields in the elec-
trolyte of some electrochemical system. The
field of calculation is a rectangular paral-
lelepiped ¥ = (2, 23,23), 2 = {0 < r, <
L =1,2,3)

The system of equations(18), (19),
and (22) were considered as the analogue of
the electromagnetic and thermal processes in
this region. On the lower side of £ a zero
electric potential was given and on the upper
one an electric current was given;

Joenle— = jolriry)

On all the lateral surfaces the condition
of zero electric current was laid down. On
all the sides of £2 the boundary conditions for
the thermal fields describe heat exchange ac-
cording to the linear law,

Jruls =@ (T — T

4 CALCULATION RESULTS

For solving the problem raised, the
method of finite differences has been ap-
plied. For solving the system of algebraic e-
quations, the combination of an iteration
method and a fast Fourier transform were
used. Some calculation results obtained on
the basis of the analogue and the algorithm
described above are listed in Table 1 and

shown in Figs. 1, 2, 3.

The limiting values of £ as well as the
thermal and electric characteristics were giv-
en so that the analogue would describe trang
fer processes in the electrolyte of an alumini-
um electrolyzer. Interrelated thermal ang
electromagnetic fields are known to be of de
cisive importance on the characteristics of a-
luminjum electrolysis.

Table 1 shows the response of the ana-
logue on changing the parameters a, .V, L,
I listed in the table are the limiting values of
these coeffcients within the accuracy of one
order, i.e. those values which resulted in.
more or less marked deviations of the result

Table i Results of the electromagnetic and
thermal characteristics design
=1 = [0—1 a— 0 a={ =10
Dewgn V=0 V=0 A - 10 12 v=0 A=
paramelers L=29 L=20 =0 L=1y-7 =1
=0 k=10 =10 L~ H— 10—
maximal potenial
A1 potemtt 1oz 1102 L1oe NV 100
difference rmW
Maximal value
240 747 21 RRTH 377
of ul/Am-2
Maximal value .
198 631 27 193 310
of Jr2iAm—2
Maximal value
6110 6 380 6380 6410 f630
of yra/Am—2
Av
feraBe IMPEEl gy 932 933 914 932
ture/ €
Maxamul
Al EmPEE gy 91k 918 952 916
ture/ €
Measuring range [ —25. 9. 1 27. 0. P—26.0, [—25.9, [—26.1,
of Ba1 .G el 2g. 90 2317 2%, 0 28.1]
Measuring range  _ 243, [ —23.4. [—207. [=14.3, | -213,
of £22,G 26. 4] Pray! 27. 2] 5.9 27.0
Measuring range [—o0.8. [—u 8, [o.4, [ —u.8, _—0.8,
of 12,6 0.4 0.8 0.81 0.87 0.8]
3

Calculation results for thermal field

Fig. 1
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Fig. 3 Calculation results for magnetic fields

obtained (of order 1% ).

‘The change of a leads to the redistribu-
tion on electric current and was practically
on effect on the maximal and average tem-
peratures. On the contrary, the coefficient
L is only in the right part of the thermal

field equation and therefore influences only
T(r) . The parameters N and R change po-
tential differences(and hence & ). In all cas-
es, clectric current deflections cause magnet-
ic field changes. Note that the maximal val-
ues of the calculated fields given in Table 1

do not show all the changes in the distribu-
tions of T (r), @(x), b(x). The greatest
variation are in the lateral magnetic field.

Likewisely in the central part of £ , where
B(x) =0 there was practically no response
of the analogue to deviations in &/ , L and R,

Symbols

J, —mass flow in i-th component,
D, — diffusion factor,
)» —mobility, =, —charge, o —liquid circu-

¢, —eoncentration,

lation velocity , K —electric field intensity,
@ —electirc potential, j — electric current

density, u— coefficient of thermoelectro-
motive force., o —electric conductivity coef-
ficient, A — thermal conductivity coeffi-

cient, [ —density of thermal flow, 7" —tem-
perature, p —density, ¢, — heat capacity,

Il —magnetic field intensity , £ —hall coef-
ficient, .N —Nernst coefficient, L. —Leduc-

Rigy coefficient, x — magnetic permeabili-
ty, w —rotw -velocity rotation.
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