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Abstract: Three important aspects of phase-mining must be optimized: the number of phases, the geometry and location of each 
phase-pit (including the ultimate pit), and the ore and waste quantities to be mined in each phase. A model is presented, in which a 
sequence of geologically optimum pits is first generated and then dynamically evaluated to simultaneously optimize the above three 
aspects, with the objective of maximizing the overall net present value. In this model, the dynamic nature of the problem is fully 
taken into account with respect to both time and space, and is robust in accommodating different pit wall slopes and different bench 
heights. The model is applied to a large deposit consisting of 2 044 224 blocks and proved to be both efficient and practical. 
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1 Introduction 
 

Phase-mining (also referred to as stage-mining) is 
widely practiced in large open-pit mines or relatively 
small ones where topographies and ore-body geometries 
are suitable. Three important aspects of phase-mining 
must be optimized to maximize the overall net present 
value (NPV): the number of phases, the geometry and 
location of each phase-pit (including the ultimate pit), 
and the ore and waste quantities to be mined in each 
phase. Therefore, planning a phase-mining operation is a 
combination of pit designing and production scheduling. 

Pit optimization, when seen as an isolated problem, 
may be considered a solved problem. The optimization 
algorithm by LERCHS and GROSSMANN[1] has been 
regarded as the landmark in this field. It has been 
implemented in a number of commercial software 
packages such as Whittle, MapTek and DataMine. 
Recent research on the pit optimization problem has been 
largely based on incorporation of various relevant 
parameters and/or conditions and different approaches 
have been proposed. FRIMPONG et al[2] incorporated 
structural, hydrological, and geotechnical conditions in 
the ultimate pit design problem and used neural network 
and artificial intelligence for solution. JALALI et al[3] 
considered uncertainties of different pit geometries and 

used Markevian chains to determine the ultimate pit. 
The production scheduling problem is much more 

complicated and research activities are still going on. 
Almost all models/algorithms for production schedule 
optimization are based on regular block models with the 
objective of determining the best sequence of mining the 
blocks so that the NPV is maximized. One of the major 
difficulties lies in the formidable size of the problem. 
The block model for a real life deposit can easily contain 
hundreds of thousands to millions of blocks. Therefore, 
substantial efforts have been focused on reducing the size 
of the problem or devising heuristic algorithms to 
enhance the efficiency and applicability of the solution 
process[4]. 

A common way of reducing the size of the 
production scheduling problem is to first combine blocks 
into block aggregates and then take the aggregates as 
decision units in various sequencing schemes. 
SAMANTA et al[5] aggregated blocks into layers and 
employed a genetic algorithm to heuristically solve the 
sequencing problem. KAWAHATA[6] used reserve 
parameterization (a more sophisticated way of 
aggregation) and Lagrangian relaxation procedure to 
solve the problem. HALATCHEV[7] proposed a 
bench-sequencing approach, in which benches were 
generated in the ultimate pit and then sequenced based 
on specified rules. RAMAZAN[8] developed another 
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way of block aggregation by constructing “fundamental 
trees” through linear programming. 

Various heuristic algorithms were developed to 
facilitate the solution of the production scheduling 
problem. CACCETTA and HILL[9] used a branch- 
and-cut approach, in which breadth-first search and 
depth-first search were considered to get possible 
schedules and implemented a linear programming based 
heuristic algorithm. BLEY et al[10] formulated an 
integer programming model and used a variable 
reduction technique by combining the production 
constraints and the precedence constraints among the 
blocks to form a so-called precedence-constrained 
knapsack for each time period and each attribute. 
BOLAND et al[11] used binary variables to enforce 
precedence between aggregates of blocks and continuous 
variables to control the amount of material extracted 
from each of the aggregates and from each block within 
an aggregate. AMAYA et al[12] developed a random, 
local search heuristic algorithm that seeks to improve on 
an incumbent integer programming solution by 
iteratively fixing and relaxing part of the solution. 
GHOLAMMEJAD and OSANLOO[13] considered 
block-grade uncertainty in their model, with each block 
having a probability distribution function obtained 
through geostatistical simulation. A genetic algorithm 
was used to solve the problem. 

For phase-mining, independently optimizing one 
phase at a time will not maximize the overall NPV due to 
the dynamic interactions among the phases. In this work, 
a dynamic phase-mining optimization model is presented, 
in which the interactions are fully accounted for. The 
basic idea was first proposed by WANG and 
SEVIM[14−15] in their production planning model. 
Improvements have been made to make it suitable to 
phase-mining optimization and also more efficient, 
optimal and practical. 
 
2 Generation of geologically optimum pits 
 

A “geologically optimum” pit for a given total 
tonnage (ore plus waste), T, is the pit that contains the 
maximum metal quantity of all the pits of the same total 
tonnage. 

It is not hard to imagine that there exist numerous, 
theoretically an infinite number of, pits for any given 
total tonnage, having different shapes and/or locations. 
Finding the one with the maximum metal quantity entails 
an efficient search in the block model. The objective is to 
obtain a sequence of nested geologically optimum pits 
with a desired increment, ΔT, between two adjacent pits. 
The basic idea is that finding the geologically optimum 
pit of total tonnage, T, is equivalent to eliminating the 
least-metal portion, ΔT, from a larger geologically 

optimum pit of total tonnage, T+ΔT. Based on this idea, 
the process of generating a sequence of geologically 
optimum pits starts with the largest possible pit for the 
deposit. 

The largest possible pit for the deposit is obtained in 
two steps. In the first step, a geometric bounding is used 
to obtain a pit so that its limit on the ground surface is 
the same as the property boundary. In the second step, a 
big enough instantaneous strip ratio, RS (net loss will 
definitely occur at this strip ratio), is used to further 
bound the pit, by eliminating those portions at the pit 
walls and pit bottom whose strip ratios are equal to or 
greater than RS. The detailed algorithms for pit bounding 
will not be presented here. The result of the geometric 
and strip-ratio bounding is the largest possible pit, which 
is also the largest geologically optimum pit, denoted   
as Pn. 

The algorithm is hereafter explained on a 2D cross 
section without losing generality. Suppose a cross 
section of this largest pit, Pn, as shown in Fig.1. The 
blocks are shown as grids whose heights are equal to the 
corresponding bench heights, and different bench heights 
can be used for different benches. The bottom elevation 
of each vertical block column is at the pit wall or pit 
bottom at the column center, and the top elevation at the 
ground surface. For accurate calculation of ore and waste 
quantities and for accurate compliance to the given pit 
wall slopes, a block column within the pit may not have 
an integer number of bocks. Partial blocks are used at the 
pit walls, ground surface and pit bottoms, if necessary. 
 

 
Fig.1 Illustration of pit and cone evaluated for possible 
elimination 
 

First, a cone template is constructed, whose surface 
angles with respect to the horizontal plane are equal to 
the pit wall slopes in pre-specified directions. If the pit 
wall has different slopes in different zones, a cone 
template is constructed for each zone. 

Then, the cone apex is placed at the center of the 
lowest block of a column (i.e. the lowest block of the 
column whose center falls inside Pn). The cone whose 
apex is at the center of the lowest block of column 5 is 
depicted in Fig.1. The metal quantity, total tonnage, and 
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the metal content per ton of the cone within the pit are 
calculated based on the grades of the whole and partial 
blocks that fall below the cone surface and above the pit 
(blocks in the dot-shaded narrow area). The cone 
location and its metal content per ton are stored in an 
array. After the cone apex is moved and placed at the 
centers of the lowest blocks of all the columns and the 
same calculations are done after each movement, an 
array of all the cone locations and their associated metal 
contents per ton is obtained. To save computer memory 
and execution time, those cones with total tonnages 
greater than the specified pit increment, ΔT, are 
discarded. This process is hereafter referred to as “a 
round of scanning”. 

The array elements, with each recording the 
location and metal content per ton of a cone, are then 
sorted in an ascending order with respect to their metal 
contents per ton, so that the first element has the least 
metal content per ton and the last the most. Suppose that 
there are N elements in the array. A union of the first M 
cones corresponding to the first M elements is sought, 
such that the total tonnage of the union, denoted by Tu, is 
equal to or smaller than the pit increment, ΔT. The 
blocks in the union of these M cones are eliminated from 
pit Pn by raising the bottom elevation of each column 
affected by one or more of the M cones to the 
corresponding cone surface. A new pit is thus obtained 
whose total tonnage is Tu tons smaller than Pn. 

If Tu is equal to or close enough to the pit increment, 
ΔT, the new pit is the next smaller geologically optimum 
pit, whose total tonnage is ΔT (or sufficiently close to ΔT) 
tons smaller than that of Pn. 

If Tu is smaller than and not sufficiently close to the 
pit increment, ΔT, another round of scanning is done 
based on the new pit and a union of least-metal content 
cones is sought, so that its total tonnage in the new pit is 
equal to or smaller than ΔT−Tu. The blocks in the cone 
union are eliminated. This process of scanning and 
eliminating continues until ΔT (or sufficiently close to 
ΔT) tons are eliminated from pit Pn, resulting in the next 
smaller geologically optimum pit, denoted as Pn−1. 

Based on Pn−1 and repeating the above process, the 
next smaller pit, Pn−2, can be obtained, and then the next 
smaller pit, Pn−3 based on Pn−2, until the tonnage of the 
remaining portion is equal to or smaller than the desired 
tonnage of the smallest pit P1. A sequence of 
geologically optimum pits is obtained. 

Since in each round of scanning, the portion that 
contains least metal content per ton is eliminated, the 
remaining pit after the elimination has the maximum (or 
very close to the maximum) metal quantity of all pits 
with the same total tonnage. Therefore, each of the pits 
thus generated is geologically optimum (or very close to 
the optimum). Also, since the surface slopes of the cone 

are the same as the pit wall slopes in pre-specified 
directions/zones and partial blocks are used at the pit 
walls, the resulting pit after each round of scanning and 
eliminating does not violate slope constraints. 
Furthermore, since each pit is generated based on a 
larger pit, the pits are nested. 
 
3 Dynamic optimization model 
 

Once a sequence of n geologically optimum pits, 
{P1, P2, …, Pn−1, Pn}, is generated with a small enough 
increment, ΔT, and sorted from the smallest to the largest, 
these pits are the best candidates for each of the 
phase-pits to be designed. They are the best candidates 
because, if it is decided to mine T tons of total material at 
the end of a phase, mining the geologically optimum pit 
corresponding to T is certainly better than mining any 
other pits of the same total tonnage. Therefore, the 
problem of determining the best phase-pits becomes a 
problem of determining which pit in the geologically 
optimum pit sequence should be used as the phase-pit for 
that phase, so that the overall NPV is maximized. 

The n geologically optimum pits are placed in a 
dynamic programming scheme shown in Fig.2. The 
horizontal axis represents stage and the vertical axis state. 
The states of a stage correspond to the geologically 
optimum pits arranged from the smallest to the largest. 
The number of stages is equal to the number of 
geologically optimum pits, n. An arrow represents a 
transition from a state of a stage to a state of the next 
stage. For the purpose of clarity, not all transitions are 
drawn in Fig.2. Since any pit of stage i is expanded 
(through mining) from a smaller pit of the preceding 
stage i−1, a state transition can only go upwards to a pit 
of current stage from smaller pits of the preceding stage. 
This is why the starting state of stage i (the lowest state) 
corresponds to pit Pi (i = 1, 2, …, n). 
 

 
Fig.2 Stages and states in dynamic programming formulation  
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In general, considering state j of stage i, the pit 
associated with this state is Pj and can be transited from 
those states of the preceding stage, i−1, whose 
corresponding pits are smaller than Pj, as shown in Fig.2. 
When pit Pj of stage i is transited from pit Pk (i−1 ≤ k ≤ 
j−1) of stage i−1, the metal quantity mi, j(i−1, k), ore 
quantity qi, j(i−1, k), and waste quantity wi, j(i−1, k) mined 
for such a transition are 

 
mi, j(i−1, k) = Mj−Mk                                         (1) 
qi, j(i−1, k) = Qj−Qk                           (2) 
wi, j(i−1, k)= Wj−Wk                                          (3) 
 
where Mj and Mk are the metal quantities contained in 
pits Pj and Pk, respectively; Qj and Qk are the ore 
quantities contained in pits Pj and Pk, respectively; Wj 
and Wk are the waste quantities contained in pits Pj and 
Pk, respectively. 

Assume that the final product of the mining 
enterprise is ore concentrate. A simplified calculation of 
the profit, Pi,j(i−1, k), made for such a transition is given 
by 
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where Rm and Rp are the recovery rates of mining and ore 
processing, respectively; Gp is the grade of concentrate, 
pi is the price of ore concentrate in stage i, which could 
be a constant; Y is the waste-mixing rate of mining; Cm, 
Cp, and Cw are the unit costs of ore mining, processing, 
and waste removing, respectively. 

Supposing that the ore mining capacity, waste 
removing capacity, and the ore processing capacity have 
a perfect match, the time length, ti,j(i−1, k), required to 
make such a transition, i.e. to mine qi,j(i−1, k) quantity of 
ore, is 
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where mi is the yearly ore mining capacity. If the 
capacities do not match, the longest time of ore mining, 
waste removing, and ore processing should be used. 

ti, j(i−1, k) may not be an integer number of years. 
Let Li, j(i−1, k) be the integer part and δi, j(i−1, k) be the 
decimal part of ti,j(i−1, k), respectively. The average 
annual profit for each of the Li, j(i−1, k) years is denoted 
by ai, j(i−1, k) and is equal to 
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The remaining profit for the decimal part, δi,j(i−1, k), 

is denoted by r i,j(i−1, k) and is 
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The cumulative time to arrive at pit Pj of stage i, 
denoted by Ti,j(i−1, k), when it is transited from pit Pk of 
stage i−1, is 
 
Ti, j(i−1, k)=Ti−1, k+ti, j(i−1, k)                    (8) 
 
where Ti−1, k is the cumulative time to arrive at pit Pk of 
stage i−1, following the best route (policy) in the 
network shown in Fig.2. 

Hence, the cumulative NPV realized at pit Pj of 
stage i, denoted by Vi, j(i−1, k), when it is transited from 
pit Pk of stage i−1, is given by 
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where Vi−1, k is the cumulative NPV associated with pit Pk 
of stage i−1, when arrived following the best route; d is 
the discount rate. 

It is clear from Fig.2 that pit Pj of stage i may be 
transited from different pits of the preceding stage i−1. 
Obviously, when pit Pj of stage i is transited from a 
different pit of stage i−1, the metal quantity, ore quantity, 
and waste quantity mined in the transition (Eqs.(1)−(3)) 
will be different, and the time length and profit will be 
different, too. Consequently, the cumulative NPV at pit 
Pj of stage i varies with different transitions (decisions). 
The transition with the highest cumulative NPV is the 
best transition (optimum decision) and, thus, the 
recursive function is 
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The initial conditions at time 0 are 
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Using the above equations and starting from the 

first stage, the pits (states) are evaluated forward stage by 
stage, until all the pits of all stages in Fig.2 are evaluated. 
The best transitions and associated cumulative NPVs are 
obtained for all the pits of all stages. Then, the pit that 
has the highest cumulative NPV of all pits of all stages is 
found. This pit is the best ultimate pit, and the stage at 
which it is found indicates the best number of phases. 
For example, supposing that the number of geologically 
optimum pits is 20, the number of stages in the dynamic 
programming scheme is also 20. If the pit with the 
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highest cumulative NPV is found at stage 4, and this pit 
is the 11th pit, P11, in the pit sequence, the deposit should 
be mined in 4 phases and the best ultimate pit is P11. 

Starting from the best ultimate pit and tracing the 
best transitions backward to the first stage, the optimum 
route can be found, which is called the optimum policy 
in dynamic programming. This optimum policy 
simultaneously indicates the number of phases (as 
discussed above), the geometry and location of each 
phase-pit (including the ultimate pit), and the ore 
quantity and waste quantity to be mined in each phase. 
 
4 Application 
 

A software package was developed based on the 
model and was applied to a large open-pit mine (which is 
not named here for confidentiality of data). The mine has 
been in operation for many years and its future phases 
are being designed. The current topography of the mine 
is shown in Fig.3. The block model of the deposit 
contains 2 044 224 blocks whose size on the horizontal 
plane is 25 m × 25 m with a height equal to the bench 
height. The bench height is 12 m above the 238 m level 
and 15 m below. A cross section of the block model is 
shown in Fig.4 where the shaded blocks are ore blocks. 
Seven different final slope angles were used for seven 
sectors, ranging from 34.5° to 51.0°. The economic and 
technical parameters are listed in Table 1. 

The mining phases were optimized based on the 
above information. The best number of phases in the 
optimum solution is 4 and the four phase-pits are shown 
in Fig.5. A cross section of the four phase-pits 
superimposed on the cross section of the block model is 
shown in Fig.6. The best ore and waste quantities to be 
mined in each of the four phases are listed in Table 2. 

It can be seen that with an annual ore production 
rate of 15×106, the time span of the phases ranges from 
8.2 to 12.7 years with a total mine life of a little over 41 
years. The time spans of the phases are reasonable 
because most of the expensive heavy equipment used in 
open-pit mining (e.g. shovels, drills, trucks) has an 
economical service life within the above range. 

The optimum solution may not be feasible at some 

 

 
Fig.3 Perspective 3-D view of current topography of mine 
 

 

Fig.4 Cross section of block model of deposit 
 
locations from a practical point of view because it is not 
possible to incorporate all practical constraints in a 
mathematical model. In Fig.6, for example, the 
horizontal distance between the phase II pit and the 
phase III pit on the right-hand side is less than 30 m, 
obviously too narrow to be practical on this cross section. 
In such cases, manual adjustment of the phase-pit 
contours is needed to arrive at a feasible solution. 

The optimum solution to the phase-mining problem 
for a given deposit depends on the parameters listed in 
Table 1. Sensitivity analyses with respect to any of these 
parameters can be easily done by using the developed 
software. Such analyses are valuable in arriving at the 
final decision. 

 
Table 1 Economic and technical parameters used in optimization 

Ore mining cost/ 
(RMB·t−1) 

Waste removal cost/ 
(RMB·t−1) 

Processing cost/ 
(RMB·t−1) 

Concentrate price/ 
(RMB·t−1) 

Discount rate/ 
% 

24 15 135 900 10 

Mining recovery/ 
% 

Processing recovery/ 
% 

Concentrate grade/ 
% 

Cut-off grade/ 
% 

Ore production rate/
(kt·a−1) 

95 82 66 25 15 000 
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Fig.5 Perspective 3D view of best phase-pits: (a) Phase I pit; (b) Phase II pit; (c) Phase III pit; (d) Phase IV pit (Ultimate pit) 
 

 
Fig.6 Best phase-pits on cross section of block model 
 
Table 2 Ore and waste tonnages and ore grades mined in each phase 

Phase 
Ore quantity to be  

mined/kt 
Waste quantity to be  

removed/kt 
Average strip-ratio 

by weight 
Average ore grade/ 

% 
I 190 233 142 682 0.750 31.02 

II 122 532 380 060 3.102 30.90 

III 129 712 660 526 5.092 30.93 

IV 176 214 1 296 968 7.360 30.85 

Total 618 691 2 480 236 4.009 30.93 
 
 
5 Conclusions 
 

1) The dynamic nature of the phase-mining 
optimization problem with respect to both time and space 
is fully accounted. 

2) Simultaneous solutions can be obtained: the 

number of phases, the geometry and location of each 
phase-pit (including the ultimate pit), and the ore and 
waste quantities to be mined in each phase. 

3) The pit-generation algorithm is robust in which 
different pit wall slopes can be specified in pre-defined 
directions or zones and the resulting phase pits have 
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nearly perfect compliance to the pit wall slopes, and 
different bench heights can also be used. 

4) Application of the model demonstrated that it is 
computationally efficient and is quite capable of 
handling large deposit models containing above a million 
blocks. 
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