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Abstract: Viscosity is one of the important thermophysical properties of liquid aluminum alloys, which influences the 
characteristics of mold filling and solidification and thus the quality of castings. In this study, 315 sets of experimental 
viscosity data collected from the literatures were used to develop the viscosity prediction model. Back-propagation (BP) 
neural network method was adopted, with the melt temperature and mass contents of Al, Si, Fe, Cu, Mn, Mg and Zn 
solutes as the model input, and the viscosity value as the model output. To improve the model accuracy, the influence of 
different training algorithms and the number of hidden neurons was studied. The initial weight and bias values were 
also optimized using genetic algorithm, which considerably improve the model accuracy. The average relative error 
between the predicted and experimental data is less than 5%, confirming that the optimal model has high prediction 
accuracy and reliability. The predictions by our model for temperature- and solute content-dependent viscosity of pure 
Al and binary Al alloys are in very good agreement with the experimental results in the literature, indicating that the 
developed model has a good prediction accuracy. 
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1 Introduction 
 

Casting aluminum alloys are widely used in 
the automotive and aerospace industries, due to 
their low density, high specific strength, and good 
thermal conductivity [1−3]. Their thermophysical 
properties such as viscosity, surface tension, and 
latent heat play a significant role in alloy 
microstructure characteristics and component 
quality soundness. Among those thermophysical 
properties, the viscosity significantly affects the 
alloy castability, and thus the characteristics of the 
mold filling, solidification shrinkage, hot tearing 
and formation of impurities, and thus the quality 
and soundness of the cast products [4]. In order to 
develop lightweight and high-performance cast 

aluminum alloys and products, it is important to 
know the viscosity of a new aluminum alloy and its 
influence on the castability. 

There are many techniques to measure the 
viscosity, including the capillary rheometer, 
oscillating vessel viscometer, and rotational 
crucible [4]. In recent years, though with the 
technology advancement and progressing 
standardization for the method to measure the 
viscosity, there are still great differences in the 
measured values of viscosity for the same alloy, 
because the measurement of viscosity is very 
complicated and difficult, and different 
measurement methods will lead to a great 
difference of data even for the same alloy [4−6]. 

The viscosity of an alloy melt is affected by 
many factors. Among those, the alloy compositions  
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and metal temperature are the most important ones. 
DINSDALE and QUESTED [6] studied the effect 
of the alloying elements on the viscosity of 
aluminum alloys, and reported that the viscosity 
increased with the content of Cu, Fe, Mn, Ni and Cr, 
but decreased with the increase of Si content. For 
pure aluminum melt, the relationship between the 
viscosity and temperature can be well expressed by 
the Arrhenius equation. For binary alloys, 
Moelwyn−Hughes model can give a reasonable 
prediction [6]. However, for multicomponent  
alloys, there are very few accurate models to predict 
the viscosity. 

With the advance of computing and artificial 
intelligent (AI) techniques, some excellent 
machine-learning algorithms and especially 
artificial neural network methods have been applied 
in materials science and engineering. There are 
many types of models for viscosity prediction. 
Back-propagation (BP) neural networks have been 
developed well in recent years, as one of AI 
algorithm. It is readily to combine with other 
algorithms, like genetic algorithm. Of more 
importance, BP neural network is suitable for 
models with multiple input variables and multiple 
data sets. XIA et al [7] used the elements Zn, Ca,  
Zr, Gd, and Sr in Mg alloys as input values to 
establish a BP neural network, and successfully 
predicted the hardness and corrosion rate of Mg 
alloys. HAN et al [8] established an artificial neural 
network model for the constitutive relationship of 
Al−0.62Mg− 0.73Si alloy, with a smaller error  
than the traditional Arrhenius-type model. Based on 
the artificial neural network, OZERDEM and 
KOLUKISA [9] predicted the tensile properties of 
Cu−Sn−Pb−Zn−Ni casting alloy. Although the 
prediction error of the elongation is high, the 
ultimate tensile strength and yield strength are well 
predicted with the average errors of 7.6% and 
−2.1%, respectively. GAO et al [10] predicted the 
fluidity of casting aluminum alloys based on BP 
neural network and the average error of the model 
is 6.6%. However, there is currently no report on 
the prediction of the viscosity of aluminum alloys 
based on the artificial neural networks. 

In this study, the viscosity experimental data 
collected from the literatures were used to develop 
the viscosity prediction model. The melt 
temperature and contents of Al, Si, Fe, Cu, Mn, Mg 
and Zn elements in aluminum alloys were selected 

as the model input. The influence of the different 
training algorithms and the number of hidden 
neurons on the model prediction accuracy was 
studied in detail. The initial weight and bias values 
were optimized using Genetic Algorithm. The 
predicted viscosity results of various alloys were 
compared with the experimental data from the 
literatures. 
 
2 Method 
 
2.1 Dataset processing 

The dataset used to develop the viscosity 
model was collected from the literatures [11−17]. 
According to the suggestion of ASSAEL et al [18], 
the collected viscosity data were divided into the 
primary data and secondary data based on a number 
of factors such as the measurement method, 
formula for deriving viscosity, alloying element 
purity, and uncertainty. The viscosity data that are 
measured by the Oscillating vessel viscometer are 
chosen as the source data to construct the prediction 
model for the viscosity of aluminum alloys.  
Therefore, the selected data in this study have the 
following characteristics: (1) the mass fraction of Al 
in the alloy is greater than 50%; (2) the viscosity 
value is measured by the oscillating vessel 
viscometer; (3) there is purification operation 
during research; (4) the viscosity value is kinematic 
viscosity η, but not dynamic viscosity, of which the 
unit is mPaꞏs. 

Among the collected data, 7 sets of viscosity 
values of different Al−Si−Cu based alloys at 
1375 K were obtained by KOBATAKE et al [11], 
85 sets of viscosity data of hypoeutectic Al−Cu 
alloys at the temperature of 900−1200 K obtained 
by PLEVACHUK et al [12], 69 sets of viscosity 
values of Al−7Si, Al−7Si−Mg, and Al−8Si−3Cu 
alloys from SKLYARCHUK et al [13], 81 sets of 
viscosity values of different Al−Fe alloys from 
SUN [15], and 43 sets of viscosity values of three 
Al−Si alloys from GENG et al [16] in which Si 
contents are respectively 5%, 12.5%, 16% in the 
temperature range of 900−1200 K. In addition, 24 
sets of the viscosity values of pure Al, A201, A319 
and A356 alloys measured by WANG and 
OVERFELT [14], and 6 sets of the viscosity values 
of LM25 alloy (nearly A356) measured by 
BROOKS et al [17] were collected. 

Table 1 summarizes the input and output 
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variables of the alloying elements and measured 
viscosity values for the total 315 sets of the 
experimental data collected from the literatures. For 
the model development, we randomly divided the 
data into the training samples and test samples, 280 
sets and 35 sets respectively. The training samples 
were used to train the neural network model and the 
test samples were used to verify the accuracy and 
reliability of the model prediction. 
 
Table 1 Ranges of input and output variables 

Variable Feature Min Max

Input 

w(Si)/% 0 50 

w(Fe)/% 0 4 

w(Cu)/% 0 30 

w(Mn)/% 0 0.71

w(Mg)/% 0 0.46

w(Zn)/% 0 1.2 

T/K 836 1375

Output Viscosity/(mPaꞏs) 0.38 2.46

 
2.2 Back-propagation (BP) neural network 

BP neural network is one of the most common 
artificial neural networks. It is a kind of multilayer 
feedforward neural network. In this network, the 
error feed-forward during the forward propagation 
of the output and input variables are passed from 
the input layer through one or more hidden layers to 
the output layer. If the error between the expected 
and predicted ones does not satisfy the  
requirements, the weight value and bias value of the 
network are optimized according to the fed-forward 
error, so that the predicted output is gradually close 
to the expected one. 

The number of the hidden layer neurons is one 
of the important parameters that needs to be 
considered. If a few of hidden layer neurons are 
used, the network is not strong enough to make 
good predictions. On the contrary, the redundant 
hidden layer neurons will cause overfitting.   
Based on the study by PIOTROWSKI and 
NAPIORKOWSKI [19], Levenberg−Marquardt 
training algorithm and Bayesian Regularization 
training algorithm were selected in our study. In 
order to transfer the input variables interval into 
(−1, 1), we applied the sigmoid function as the 
transfer function between the input layer and hidden 
layer while the pure linear transfer function was 

used between the hidden layer and output layer. 
Moreover, the core parameters of the network, the 
weight values and the bias values, were optimized 
using genetic algorithm. All the algorithms 
mentioned above were implemented on MATLAB 
software. 
 
2.3 Genetic algorithm 

First, the genetic algorithm, of which the basis 
is the theory of evolution in nature, determines the 
parameters that need to be optimized. In each 
iteration of the optimization, the population 
composed of different parameters is called a 
generation. Common fitness function used to 
evaluate the quality of each generation is reciprocal 
of the difference between the expected and 
predicted ones. Then, the population is evolved 
through the random selection, crossover, and 
mutation operations. The algorithm terminates until 
a satisfactory fitness appears in one iteration. 

The parameters that need optimization are the 
initial weight value and bias value. The equations 
for the number of the initial weight value and bias 
value are as follows: 
 
niw=ninh+nhno                                             (1) 
 
nib=nh+no                                                 (2) 
 
where niw and nib are the numbers of the initial 
weight value and initial bias value, respectively, and 
ni, nh, no are the numbers of the input neurons, 
hidden neurons and output neurons, respectively. 
The sum of niw and nib is the gene of an individual in 
a generation, and the length of the genetic code is 
processed by the real-number encoding (10nh+1) 
because the number of the input neurons is 8 and 
the number of output neurons is 1. Then the proper 
gene crossover probability and mutation probability 
are chosen, so that the population starts to evolve, 
and finally gets the best initial weight and bias 
values. 
 
3 Results and discussion 
 
3.1 Model optimization 
3.1.1 Training algorithms and number of hidden 

neurons 
Both Levenberg-Marquardt training (Trainlm) 

algorithm and Bayesian Regularization training 
(Trainbr) algorithm have good performances. The 
Trainlm algorithm is the most widely used 
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nonlinear least squares algorithm, combining the 
steepest descent method and linearization method. 
When the parameters are few, the Trainbr algorithm 
can avoid overfitting by modifying the loss function. 
Figure 1 shows the comparison of mean absolute 
error (MAE) of the test samples changing with the 
different numbers of the hidden neurons for the 
model trained by the Trainlm and Trainbr 
algorithms. Apparently, the obtained MAE values 
by the Trainbr algorithm are much smaller than 
those by the Trainlm algorithm, no matter what the 
number of the hidden neurons is used. This means 
that the Trainbr algorithm is the best choice for our 
BP neural network. Also, for the model trained by 
the Trainlm algorithm, the MAE values of the test 
samples are nearly random when the number of 
hidden neurons is greater than 8. The reason for this 
irregular result is thought to be that the Trainlm 
algorithm can easily fall into local optimal solution 
during the iteration, particularly when the 
dimensions are very large. However, the result 
trained by the Trainbr algorithm is more stable 
compared with the Trainlm algorithm. 
 

 
Fig. 1 MAE values of test data for different numbers of 

hidden neurons trained by Trainlm and Trainbr 

algorithms 

 
Figure 2 shows that when the number of the 

hidden neurons is further expanded, the MAE value 
by the Trainbr algorithm will have a sudden 
increase, even though it is almost unchanged when 
the number of the hidden neurons is below 22. 
Because of the negligible profit of more hidden 
neurons and the advantage of the simpler model 
with fewer hidden neurons, the number of the 
hidden neurons in our BP neural network model is 
determined as 8. 

 

 

Fig. 2 MAE values of test data for much expanded 

number of hidden neurons trained by Trainbr algorithm 

 
3.1.2 Initial weight and bias values 

If not optimized by an algorithm, the initial 
weight and bias values are usually given randomly 
by MATLAB and thus the models are not stable 
because of the random parameters used. The 
difference between the MAE values of the initial 
model and the optimized model is shown in Fig. 3. 
Although the results of each simulation vary with 
the number of the hidden neurons, the optimized 
model has a better performance consistently. 
 

 
Fig. 3 MAE of predictions of test data before and after 

optimization 

 

The fitness (F) of every generation is the 
reciprocal of total MAS predicted by each model in 
this population. With the increase in the iteration 
numbers, the reciprocal of fitness is getting smaller, 
which means that the network models are getting 
closer to the optimal one. As shown in Fig. 4, in this 
case the population is 100, the average fitness of the 
population is increased with the iteration. This 
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indicates that the average MAE is getting smaller 
and the best model can be obtained in the last 
generation. 
 

 

Fig. 4 Optimization process by genetic algorithm 

 
3.2 Model validation 

Using our optimized BP neural network model, 
the predicted viscosity values are compared with 
the test data, as shown in Fig. 5. They are much 
closed each other. About two thirds of predictions 
have a relative error (the difference of the predicted 
and experimental values/the experimental value) 
less than 3%, and the relative errors of all 
predictions are less than 5% (see Fig. 6(a)). As 
shown in Fig. 6(b), the predicted viscosity values 
have very good correlation with measurement data 
within the viscosity value ranging from 0.5 to 
2.3 mPaꞏs (R2=0.96). This indicates that the 
developed BP model for the viscosity of aluminum 
alloys has a high prediction accuracy. 
 

 

Fig. 5 Comparison between predicted and experimental 

viscosity values for test samples 

 

 

Fig. 6 Relative error of predictions for all test samples by 

optimal BP model (a), and linear fitting of predicted 

viscosity values with experimental ones for all test 

samples (b) 

 
3.3 Application of viscosity BP model 
3.3.1 Influence of temperature 

The Arrhenius equation is most frequently 
used to represent the effect of temperature on 
viscosity: η=η0exp[E/(RT)], where T is the 
temperature in K, E is the activation energy for 
viscous flow, η0 is the pre-exponential viscosity, and 
R is the mole gas constant. 

Figure 7 shows the predicted viscosity values 
of the pure Al, and Al−7Si and Al−4Cu alloys with 
the temperature using the optimized model and the 
comparison of them with the experimental values. 
The predicted temperature dependence of the 
viscosity of the pure Al can be seen in Fig. 7(a), 
which is consistent with the results in Refs. [15,16]. 
The predicted viscosity values of Al−7Si alloy are 
also very close to ones measured by 
SKLYARCHUK et al [13] and the trend fits the 
Arrhenius equation very well in the temperature 
range from 900 to 1200 K (Fig. 7(b). Similarly, the 
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results of Al−4Cu alloy predicted by our model  
are very consistent with those by PLEVACHUK  
et al [12], as shown in Fig. 7(c). 
 

 
Fig. 7 Predicted temperature dependence of viscosity of 

pure Al (a), Al−7Si (b) and Al−4Cu (c) alloys and 

comparison with corresponding results in Refs. [12−15] 

 

As shown in Table 2, the parameters obtained 
by fitting the predicted viscosity values with the 
Arrhenius equation are compared with those in the 
literatures. The parameters calculated from the BP 
neural network model are close to Ref. [12] for 
Al−4Cu alloy. Meanwhile, there is only very small 

difference between our study and Ref. [13] for pure 
Al and Al−7Si alloy. This indicates a good 
prediction accuracy of our BP model for the 
viscosity of aluminum alloys. 
 
Table 2 Comparison of parameters of Arrhenius equation 

between this study and references 

Alloy η0/(mPaꞏs) E/(kJꞏmol−1) Source 

Pure Al 
0.197 14.97 This study 

0.16 16.63 Ref. [13] 

Al−7Si 
0.247 11.77 This study 

0.206 13.38 Ref. [13] 

Al−4Cu
0.179 16.01 This study 

0.196 15.21 Ref. [12] 

 

3.3.2 Binary alloys 
As mentioned above, DINSDALE and 

QUESTED [6] reported that the viscosity of 
aluminum alloys increases with the increase of Cu 
and Fe, but conversely with Si content. The effect 
of the solute content on the viscosity of Al binary 
alloys is predicted by our model, as shown in Fig. 8. 
The Si content is 7−20 wt.% (see Fig. 8(a)), which 
is a little narrow due to the limitation of the 
available dataset. For Al−Si alloys, there is a   
good agreement between the predicted viscosity 
values and the ones measured by SKLYARCHUK 
et al [13]. The viscosity first decreases rapidly with 
increasing Si content and then it declines slowly 
when Si content is greater than 12 wt.%. For the 
effect of Cu solute content, as seen in Fig. 8(b), the 
viscosity is positively correlated with Cu content in 
the alloy. The predicted viscosity values are very 
close to those measured by PLEVACHUK et al [12]. 
The addition of 0.2 wt.% Fe in Al can sharply 
increase the viscosity from about 1.0 to 2.0 mPaꞏs, 
which is an interesting phenomenon. SUN [15] 
stated that Fe is harmful to Al alloys because it can 
cause a rapid increase of the viscosity. For binary Al 
alloys, the predictions by our model also agree very 
well with results in the literature. 
3.3.3 Ternary alloys 

Figure 9 exhibits the contour map of the 
viscosity of Al−Si−Cu alloys predicted by our 
viscosity model, where Si content varies from 6 to 
20 wt.% and Cu content from 6 to 20 wt.% at 
1000 K. For the contour map of Al−Si−Cu alloy 
system, there exist a region with large viscosity 
(orange area, bottom right corner) and a region with  
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Fig. 8 Predicted and experimental viscosity values of 

Al−Si alloys (a), Al−Cu alloys (b) at 1000 K and Al−Fe 

alloys at 1150 K (c) and comparison with corresponding 

results in Refs. [12,13,15] 

 
small viscosity (blue area, top left corner). As seen 
from the contour plot, when the Si content is low, 
contour lines are very dense and parallel to the Cu 
content axis, indicating Si solute content plays a 
vital role in determining viscosity. In addition, the 
slope of the contour line approaches 1 when Si 
content is more than about 14 wt.% in the alloy. 
This implies that if the same amount of Si and Cu is 
added into the alloy the viscosity value will keep 
constant. This is due to the neutralization effect of 

the combined Si and Cu contents on the viscosity. 
The results above suggest that the developed BP 
viscosity model can be applied to the design of 
multicomponent Al alloys. 

 

 

Fig. 9 Prediction of viscosity of Al−xCu−ySi alloys at 

1000 K 

 
4 Conclusions 
 

(1) The Bayesian Regularization algorithm 
provides a better training results than the 
Levenberg−Marquardt algorithm in our model and 
the best number of the hidden neurons is 8 in this 
study. 

(2) The initial weight and bias values are also 
optimized using genetic algorithm, which improves 
the model accuracy considerably. 

(3) The average relative error between the 
predicted and experimental viscosity data is less 
than 5%, exhibiting a good prediction accuracy. 

(4) The BP neural network viscosity model can 
predict the temperature- and solute content- 
dependency of the viscosity in pure Al, binary, and 
ternary Al alloys, with a good accuracy. 
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基于 BP 神经网络算法的铝合金黏度预测模型 
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摘  要：黏度是液体铝合金重要的热物性质之一，影响到液体充型与凝固的特征，继而铸件的质量。在本研究中，

从文献中收集了 315 组实验测定的黏度数据，用来开发黏度预测模型。采用 BP 神经网络算法构建模型，以熔体

温度和合金中 Al、Si、Fe、Cu、Mn、Mg 和 Zn 的含量作为模型输入，并以黏度值作为模型输出。为了改善模

型精度，研究不同训练算法和隐含层神经元数的影响。使用遗传算法优化初始权重与赋值，这显著改善了模型精

度。模型预测值与实验值间的相对误差小于 5%，证明所构建的优化模型具有高的预测精度与可靠性。用建立的

模型对纯 Al 和二元 Al 合金的黏度随温度和溶质含量变化的预测结果与文献中的实验结果非常一致，表明该模型

在工程应用中具有较好的预测精度。 

关键词：BP 神经网络；铝合金；黏度；遗传算法；预测模型 
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