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Abstract: The as-spun Ti1−xLaxFe0.8Mn0.2 (x=0, 0.01, 0.03, 0.06, 0.09, molar fraction) alloys were prepared by melt 
spinning. The effects of La substitution for Ti on the microstructure, hydrogen storage kinetics and thermodynamics of 
TiFe-type Ti−Fe−Mn-based alloy were investigated. The as-spun alloys hold the TiFe single phase, which transforms to 
TiFeH0.06, TiFeH, and TiFeH2 hydrides after hydrogenation. La substitution promotes the formation of micro-defects 
(such as dislocations and grain boundaries) in the alloys, thus facilitating hydrogen diffusion. In addition, the hydrogen 
storage kinetics properties are improved after introducing La element. With the rise of La content, the hydrogen storage 
capacity decreases firstly and then increases, but the absolute value of hydriding enthalpy change (|ΔH|) increases firstly 
and then reduces. When x=0.01, the maximum value of |ΔH| is obtained to be (25.23±0.50) kJ/mol for hydriding, and 
the alloy has the maximum hydrogen absorption capacity of (1.80±0.04) wt.% under the conditions of 323 K and 3 MPa. 
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1 Introduction 
 

The use of fossil energy has caused serious 
environmental problems and ecological crises, such 
as acid rain, greenhouse effect, and heat island 
effect. Therefore, finding a clean and efficient new 
energy that can replace traditional fossil energy has 
become one of the most important strategic 
measures worldwide to deal with energy and 
environmental issues and promote sustainable 
economic development [1]. Hydrogen energy is a 
clean, green, and sustainable energy all the time. As 
a new energy system that is environment-friendly, 
hydrogen energy can be a replacement for fossil 
energy and used as onboard vehicle power [2]. 
However, hydrogen storage is the key concern in 
the practical application of hydrogen energy. 
High-pressure compressed hydrogen storage is the 
traditional method but it is accompanied by many 

safety hazards. Metal hydrides are safe and efficient 
materials for hydrogen storage and can realize    
the reversible absorption/desorption of hydrogen  
under moderate temperature and pressure [3−6]. 
TiFe-based alloy is a potential hydrogen storage 
material due to its high hydrogen storage capacity, 
favorable dehydrogenation temperature, moderate 
dehydrogenation pressure, and low cost [7−12]. 
However, the poor activation performance 
(activation for hydrogenation is required at 630 K) 
of TiFe-based alloy is a huge obstacle for its 
application [13−15]. If the Ti content in the TiFe 
alloy is insufficient, the TiFe2 phase will coexist 
with the matrix phase of TiFe. Given that TiFe2 
does not react with hydrogen, the hydrogen 
absorption capacity of the alloy decreases. If the 
content of Ti is excessive, the reaction between Ti 
and hydrogen will produce TiH2, which is tough  
to decompose at low temperature. In addition,   
the maximum hydrogen absorption capacity of the 
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alloy is reduced when the excessive titanium is 
added. Therefore, the preparation of TiFe alloy 
should be optimized to ensure the use of suitable 
stoichiometric ratio. 

Many techniques including element sub- 
stitution, mechanical alloying, surface modification, 
and high pressure torsion, have been developed   
to improve the activation performance [16−25]. 
One of the most effective methods is element 
substitution. For instance, Mn substitution 
facilitates the activation because of the preferential 
oxidation of Mn and the related surface segregation. 
Substituting Fe with Mn affects the activation 
performance and reduces the activation temperature 
from 573 to 423 K [26]. The use of Ni part 
substitution for Fe can substantially improve the 
activation performance, and decrease the activation 
temperature of TiFe alloy from 573 to 443 K [27]. 
Titanium replacement by magnesium can also 
enhance the hydrogen storage performance and 
hydrogen charging capacity [28]. Rare earth 
elements, such as Ce, have been added to 
TiFe0.9Mn0.1 alloy to improve the activation 
property and the obtained alloys can immediately 
absorb hydrogen at the hydrogen pressure of 
4.0 MPa and the temperature of 353 K without  
any pretreatment [29]. Mn replacement can also 
enhance the activation property and reduce the 
incubation time to a certain extent. The 
above-mentioned improvements are related to the 
increased number of interfaces between the second 
phase and the TiFe main phase, and the composition 
of the second phase. Excellent activation 
performance for the alloy can be obtained by 
introducing a high amount of interfaces and the 
high activity of the second phase. 

Inducing formation of nanostructures is also an 
effective strategy to enhance the hydrogen storage 
performance of TiFe-based alloy. When the grain 
size of TiFe-based alloy is maintained at the 
nanometer level, it can be fully activated and absorb 
hydrogen under 1 MPa hydrogen pressure [30]. 
Short-time ball milling is an effective process to 
enlarge the specific surface area and reduce the 
particle and grain size without changing the   
alloy composition [31]. Melt spinning is also a 
preparation method for nano-materials. The 
substitution of a small amount of La can 
remarkably enhance the activation performance of 
TiFe alloy [32]. In consideration of the positive  

role of element substitution and melt spinning    
in hydrogen storage performance, in this work, 
Ti1−xLaxFe0.8Mn0.2 (x=0, 0.01, 0.03, 0.06, 0.09) 
alloys were prepared through melt spinning, and the 
microstructure and hydrogen storage properties of 
these alloys were also studied. 
 
2 Experimental 
 

The as-cast Ti1−xLaxFe0.8Mn0.2 (x=0, 0.01, 0.03, 
0.06, 0.09, molar fraction) alloys were prepared 
through vacuum-induced melting in Ar atmosphere. 
The purity of the metals (Ti, La, Fe, Mn) 
was >99.7%. In consideration of the evaporative 
loss during the preparation, a slightly excessive 
(5 wt.%) La was added. Partial as-cast alloys were 
re-melted in a vacuum induction furnace to prepare 
the as-spun specimens through single roller rapid 
quenching. The re-melted alloys were sprayed on 
the surface of the rotating roller. Given that the 
cooling rate is difficult to measure precisely, the 
spinning speed was defined as the copper roller 
linear velocity. The spinning rate was set to be 
10 m/s. The actual La amount of the as-spun alloy 
was measured by inductively coupled plasma (ICP), 
which revealed that the composition of the alloy 
conforms to the designed atomic ratio. For 
convenience, the as-spun Ti1−xLaxFe0.8Mn0.2 alloys 
with x=0, 0.01, 0.03, 0.06, and 0.09 were defined as 
La0, La1, La3, La6, and La9, respectively. 

The samples before and after hydrogenation 
were characterized by X-ray diffraction (XRD) and 
high resolution transmission electron microscopy 
(HRTEM). The hydrogen storage properties were 
measured by a Sieverts-type apparatus. The alloys 
were activated under the initial pressure of 3 MPa at 
423 K. Pressure composition isotherms (PCI) were 
measured at temperatures of 303, 323, 343 and 
363 K. The accuracy of the experiment was 
evaluated, and the verifying experiments showed 
that the measurement error is less than 0.2% 
according to the physical factors, including pressure 
(precision is 100 Pa), temperature (precision is 
0.01 K), time (precision is 0.01 s), and mass 
(precision is 0.001 g). 
 
3 Results and discussion 
 
3.1 Structural characterization 

Figure 1 shows the XRD patterns of the 
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as-spun Ti1−xLaxFe0.8Mn0.2 (x=0, 0.01, 0.03, 0.06, 
0.09) alloys before and after hydrogenation. All 
as-spun alloys are composed of TiFe single phase. 
La substitution does not change the phase 
composition. Figure 1(b) shows the XRD patterns 
of the as-spun alloys after hydrogenation at 3 MPa 
and 423 K. The diffraction peak expands with the 
increase in La substitution, indicating that this 
process leads to nanocrystallization. The diffraction 
peaks of TiFeH0.06, TiFeH, and TiFeH2 phases are 
found in the La0, La1, and La3 alloys, respectively. 
When the added La content is increased to 0.06, 
TiFeH0.06 and TiFeH phases are observed. In 

addition, a TiH phase appears when the La content 
is increased to 0.09. A two-step reaction, TiFe→ 
TiFeH → TiFeH2, occurs in the hydrogenation of 
TiFe alloy [33]. However, the step of TiFeH to 
TiFeH2 is hindered when the La content is increased 
to 0.06 according to the XRD results. 

The microscopic crystal structures of as-spun 
alloys before and after hydrogenation with La0 and 
La1 alloys as representatives are observed and 
characterized by HRTEM, as shown in Fig. 2. 
Similar to the results of XRD analysis, TiFe   
phase is observed in La0 and La1 alloys before 
hydrogenation (Figs. 2(a) and (c)), and TiFeH and 

 

 

Fig. 1 XRD patters of as-spun Ti1−xLaxFe0.8Mn0.2 (x=0, 0.01, 0.03, 0.06, 0.09) alloys: (a) Before hydrogenation; (b) After 

hydrogenation 

 

 

Fig. 2 HRTEM images of La0 before (a) and after (b) hydrogenation, and La1 before (c) and after (d) hydrogenation 
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TiFeH2 phases are detected in the alloys after 
hydrogenation (Figs. 2(b) and (d)). When Ti in the 
alloy is substituted by La, the spacing of TiFe (110) 
planes is decreased from 0.2108 to 0.2096 nm. This 
discovery can be attributed to the larger atomic 
radius of La than that of Ti. SHANG et al [34] also 
reported that interplanar crystal spacing becomes 
narrow after rare earth substitution. Many structural 
defects such as lattice dislocations and partial 
amorphous structures can also be observed when La 
is substituted for Ti alloys. Moreover, the amounts 
of nanocrystalline and grain boundaries in the 
La-substituted alloys are higher than those in 

non-substituted ones. After hydrogen absorption, 
TiFeH2 phase is embedded in TiFeH phase matrix 
(Fig. 2(d)). The structural defects and nano- 
crystalline boundaries introduced by La substitution 
can facilitate hydrogen diffusion [34]. 
 
3.2 Hydrogen storage kinetics 

Prior to hydrogen absorption kinetics test, all 
the as-spun alloys were fully activated by three 
hydrogenation/dehydrogenation cycles under the 
conditions of 3 MPa and 423 K, and the obtained   
plots are presented in Fig. 3. The as-spun 
Ti1−xLaxFe0.8Mn0.2 (x=0, 0.01, 0.03, 0.06, 0.09)  

 

 

Fig. 3 Hydriding cycle curves of as-spun Ti1−xLaxFe0.8Mn0.2 (x=0, 0.01, 0.03, 0.06, 0.09) alloys at 3 MPa and 423 K:   

(a) La0; (b) La1; (c) La3; (d) La6; (e) La9 
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alloys exhibit good activation ability and can absorb 
hydrogen in the first cycle. Besides, almost no 
incubation period is required. Therefore, La 
substitution reduces the time of hydriding reaction 
and improves the activation ability of the alloy. 

Figure 4 shows the hydrogen absorption 
kinetic curves of the as-spun alloys at 303, 323,  
343, and 363 K. All as-spun alloys have relatively 
fast absorption kinetics at above temperatures, 
especially La1 alloy at 303 K. After full activation, 
all these alloys could absorb hydrogen to saturation 
within 3 min. The hydrogen absorption capacities of 
the as-spun alloys are listed in Table 1. The La1 
alloy has the maximum hydrogen absorption 
capacity of (1.80±0.04) wt.% at the temperature of 
323 K in all as-spun alloys. The hydrogen storage 
capacity decreases with increasing La content from 
0.01 to 0.06. However, the hydrogen absorption 
capacity increases when x=0.09. This finding can be 
attributed to the structural characteristic discussed 
in the XRD and HRTEM analysis. With increasing 
La content to 0.06, the amount of TiFeH0.06 phase in 
La6 alloy also increases. Hence, the hydrogen 

storage is less than that of TiFeH2 phase. The TiH 
hydride phase is also found in the hydrogenated 
La9 alloy and it has contributed to the increase in 
the hydrogen capacity. 

 
3.3 Hydrogen storage thermodynamics 

The hydrogen absorption/desorption thermo- 
dynamic properties of the as-spun Ti1−xLaxFe0.8Mn0.2 

(x=0, 0.01, 0.03, 0.06, 0.09) alloys were evaluated 
by pressure composition isotherms (PCI) curves. 
The wide range of hydrogen absorption with almost 
horizontal plateau pressure is important for the 
application of TiFe type materials. All the alloys 
have two plateau regions during hydrogen 
absorption/desorption. The α-TiFe phase changes to 
TiFeH and TiFeH2 during hydrogen desorption [30]. 
Therefore, the two plateau regions represent the two 
hydrogen absorption/desorption steps in all the 
alloys. The lower plateaus with the hydrogen 
capacity ranging from 0 to 1 wt.% correspond to the 
reversible reaction of TiFe to TiFeH, and the higher 
plateaus with the hydrogen capacity ranging from 
1 wt.% to 1.6 wt.% match the reversible reaction of  

 

 
Fig. 4 Hydrogen absorption kinetic curves of as-spun Ti1−xLaxFe0.8Mn0.2 alloys at different temperatures: (a) 303 K;   

(b) 323 K; (c) 343 K; (d) 363 K 



Ze-ming YUAN, et al/Trans. Nonferrous Met. Soc. China 31(2021) 3087−3095 3092

Table 1 Hydrogen absorption capacities of alloys at 

different temperature (wt.%) 

Alloy 303 K 323 K 343 K 363 K 

La0 1.79±0.04 1.75±0.03 1.63±0.03 1.53±0.03

La1 1.76±0.04 1.80±0.04 1.69±0.03 1.50±0.03

La3 1.61±0.03 1.62±0.03 1.44±0.03 1.28±0.03

La6 1.18±0.02 1.20±0.02 1.16±0.02 1.06±0.02

La9 1.67±0.03 1.58±0.03 1.33±0.03 1.20±0.02

 

TiFeH to TiFeH2. Figure 5 shows that La 
substitution substantially influences the equilibrium 
pressure plateaus in PCI curves. The plateau 
pressure is heightened, and the plateau width is 
shortened by increasing La content. 

The pressure plateau is closely related to the 
enthalpy changes of the hydride. Hence, the 
enthalpy change (ΔH) and entropy change (ΔS)  
for the hydrogen absorption/desorption of the 
reversible reaction of TiFe to TiFeH were evaluated 
by the pressure plateaus at different temperatures. 
The ΔH and ΔS values can be calculated by the 

Van’t Hoff plot: 
 
ln(P/P)=ΔH/(RT)−ΔS/R                    
 
where P is the equilibrium pressure (MPa).   
Given that the plateau of TiFe phase is not flat 
during hydrogenation/dehydrogenation, the plateau 
pressure is chosen at the median of pressure 
corresponding to the 20% of the maximum 
hydrogen absorption capacity. P is the standard 
atmosphere pressure (MPa), R is the gas constant 
(8.314 J/(Kꞏmol)), and T is temperature (K). 

On the basis of the plateau pressures obtained 
from PCI curves at 303, 323, 343, and 363 K, the 
ΔH and ΔS values for the hydrogen absorption/ 
desorption can be obtained from the slope and 
intercept of the Van’t Hoff plots, as shown in Fig. 6. 
The absolute value of hydrogen absorption enthalpy 
change (|ΔHab|) firstly increases and then decreases 
with increasing the La content. When La content is 
0.01, the maximum absolute value of enthalpy 
change is (25.23±0.50) and (30.06±0.60) kJ/mol  
for the hydrogenation and dehydrogenation, 
respectively. A low absolute value of ΔH indicates 
the instability of the hydrides. 

 

 
Fig. 5 PCI curves of as-spun Ti1−xLaxFe0.8Mn0.2 (x=0, 0.01, 0.03, 0.06, 0.09) alloys at different temperatures: (a) 303 K; 

(b) 323 K; (c) 343 K; (d) 363 K 
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Fig. 6 Van’t Hoff plots and enthalpy change of as-spun Ti1−xLaxFe0.8Mn0.2 (x=0, 0.01, 0.03, 0.06, 0.09) alloys for 

hydrogen absorption/desorption process at different temperatures: (a) La0; (b) La1; (c) La3; (d) La6; (e) La9; (f) ΔHab 

 

4 Conclusions 
 

(1) The as-spun Ti1−xLaxFe0.8Mn0.2 (x=0, 0.01, 
0.03, 0.06, 0.09) alloys contain the TiFe phase, 
indicating that La substitution does not change the 
phase composition of the alloys. After hydrogen 
absorption, the TiFeH0.06, TiFeH, and TiFeH2 phases 
exist in the alloys. The TiH phase appears when the 

La content is 0.09. 
(2) The hydrogen storage capacity slightly 

increases firstly and then decreases with La content 
varying from 0.01 to 0.09. The La1 alloy holds the 
maximum hydrogen capacity of (1.80±0.04) wt.% 
at 323 K. 

(3) The plateau pressure is heightened with 
increasing La content. The absolute value of 
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hydrogenation enthalpy change |ΔH| increases 
firstly and then decreases with increasing La 
content. The La1 alloy exhibits the maximum 
absolute value of hydrogenation enthalpy change 
|ΔH|, implying that hydride of La1 alloy is unstable. 
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La 替代对快淬 Ti−Fe−Mn 基合金显微组织和贮氢性能的影响 
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摘  要：采用熔融纺丝法制备 Ti1−xLaxFe0.8Mn0.2 (x=0，0.01，0.03，0.06，0.09，摩尔分数)快淬态合金。研究 La

替代 Ti 对 TiFe 型 Ti−Fe−Mn 基合金显微组织、贮氢动力学和贮氢热力学的影响。所有快淬态合金均保持单一的

TiFe 相；加氢后，TiFe 相转变为 TiFeH0.06、TiFeH 和 TiFeH2 氢化物。La 替代促进合金微观缺陷(如位错和晶界)

的产生，这利于氢扩散。此外，La 替代还提高储氢动力学性能。随 La 含量的增加，合金的贮氢容量先减小后增

大，氢化焓变的绝对值(|ΔH|)先增大后减小。当 x=0.01 时，合金加氢焓变的绝对值|ΔH| 大，为(25.23±0.50) kJ/mol，

在 323 K、3 MPa 条件下合金的 大贮氢容量为(1.80±0.04) wt.%。 

关键词：La 替代；Ti−Fe−Mn 基合金；熔融纺丝；贮氢动力学；热力学 
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