

Available online at www.sciencedirect.com



Transactions of Nonferrous Metals Society of China

www.tnmsc.cn

Trans. Nonferrous Met. Soc. China 21(2011) 2010-2014

Template synthesis of MnO<sub>2</sub>/CNT nanocomposite and its application in rechargeable lithium batteries

ZOU Min-min, AI Deng-jun, LIU Kai-yu

School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China

Received 17 June 2010; accepted 15 August 2010

**Abstract:** Nanostructured  $MnO_2/CNT$  composite was synthesized by a soft template approach in the presence of Pluronic P123 surfactant. The product was characterized by X-ray diffraction, thermogravimetric and differential thermal analyses, Fourier transformed infrared spectroscopy and high-resolution transmission electron microscopy. The results show that the sample consists of poor crystalline  $\alpha$ -MnO<sub>2</sub> nanorods with a diameter of about 10 nm and a length of 30–50 nm, which absorb on the carbon nanotubes. The electrochemical properties of the product as cathode material for Li-MnO<sub>2</sub> cell are evaluated by galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). Compared with pure MnO<sub>2</sub> electrode, the MnO<sub>2</sub>/CNT composite delivers a much larger initial capacity of 275.3 mA·h/g and better rate and cycling performance.

Key words: MnO<sub>2</sub>/CNT; soft template; nanocomposite; rechargeable lithium batteries

# **1** Introduction

Rechargeable lithium batteries have long been considered an attractive power source for wide applications, ranging from portable electronics to large-scale application such as plug-in hybrid vehicles [1-3]. Various transition metal oxides have been widely studied as electrode materials for rechargeable lithium batteries because of their high theoretical capacity, safety, environmental benignity, and low cost [4-7]. Among transition metal oxides, manganese(IV) oxide is one of the most attractive electrode materials for lithium batteries with environmental friendliness, low cost, and natural abundance [8-9]. However, its potential application in rechargeable lithium batteries is limited by its poor electrical conductivity and large volume expansion during repeated cycling processes [8]. Nanostructured morphologies of these electrodes with controlled crystallinity have been designed to overcome some of these challenges [10-11]. MnO<sub>2</sub>/CNTs nanocomposite [12], MnO<sub>2</sub>/VACNTs [13] nanocomposite, graphene oxide-MnO<sub>2</sub> nanocrystals [14] and polythiophene/MnO<sub>2</sub> nanocomposite [15] were prepared to improve their capacitive properties. Onedimensional (1D) [16] and three-dimensional (3D) [17]

nanostructured  $MnO_2$  were always synthesized by template method. Template synthesis [18] is a simple and versatile method widely used to obtain nanomaterials and porous structures.

In this study, to combine the merits of template synthesis and the excellent electrical conductivity of CNTs,  $\alpha$ -MnO<sub>2</sub>/CNTs nanostructure was constructed and prepared by soft template synthesis. Its electrochemical performances in rechargeable lithium batteries were investigated.

# **2** Experimental

# 2.1 Synthesis of MnO<sub>2</sub>

 $MnO_2/CNT$  composite was prepared by a template method in de-ionized water at room temperature. 0.03 g block copolymer P123 was dissolved in 10 mL de-ionized water and mixed with 10 mL 0.4 mol/L  $MnSO_4$  and carbon nanotubes (the theoretical content in the final product is 5%). After being stirred for 12 h, 20 mL solution containing stoichiometric KMnO<sub>4</sub> was added dropwise to the above-mentioned solution and stirred constantly for 24 h. The precipitate was filtered and washed several times, and then dried at 80 °C for 12 h. Finally, the samples were annealed at 350 °C for 6 h to exclude the sample for TGA measurement. For

Foundation item: Projects (21071153, 20976198) supported by the National Natural Science Foundation of China

Corresponding author: LIU Kai-yu; Tel: +86-731-88830886; E-mail: kaiyuliu@263.net

DOI: 10.1016/S1003-6326(11)60964-3

comparison, the  $MnO_2$  was synthesized without addition of CNTs.

## 2.2 Characterization

Crystal structure of the manganese oxide was identified by X-ray powder diffraction (D/MAX-IIIC) with a Cu K<sub> $\alpha$ </sub> target. Morphology was examined using a scanning electron microscope (JEOL, JSM-6360LV) and a high-resolution transmission electron microscope (JEOL, JEM-3010). Fourier transformed infrared spectroscopy analysis was carried out on a Bruker Equinox55 spectrophotometer (AVATAR360 Nicolet). Thermogravimetric analysis was conducted in N<sub>2</sub> atmosphere at a heating rate of 10 °C/min on a thermal analyzer (TGA/SDTA851<sup>e</sup>, METTLER TOLEDO).

#### 2.3 Electrochemical measurement

The as-synthesized products were employed as cathode active materials for rechargeable lithium-ion cells. The MnO<sub>2</sub>/CNT or MnO<sub>2</sub> electrode was composed of 75% (mass fraction) active material, 15% carbon black (containing 5% CNTs) and 10% polytetrafluoroethylene (PTFE). The mixture was pressed into Al foil. The electrodes were dried at 120 °C in a vacuum furnace for 24 h. The coin cells were assembled using MnO<sub>2</sub> or MnO<sub>2</sub>/CNT as working electrode, lithium metal foil as the counter, and 1 mol/L solution of  $LiPF_6$  in 1:1 (V/V) mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) as electrolyte, and a Celgard 2400 membrane was used as separator.

Electrochemical performance was investigated using the Land 2001A battery measurement system (Wuhan, China). All the laboratory-made Li-MnO<sub>2</sub> cells were charged and discharged at a rate of 30 mA/g between 3.5 and 2.0 V vs Li/Li<sup>+</sup>. EIS tests were conducted by PARSTAT 2273 electrochemical system in the frequency range of 1 MHz–1 mHz, with perturbation amplitude of 5 mV.

## **3 Results and discussion**

#### 3.1 Structure analyses

Figure 1 shows the typical TG-DTA behavior of the synthesized manganese oxide. A mass loss of 16% at temperatures higher than 550 °C has been detected. The apparent mass loss (about 9%) from room temperature to 200 °C can be assigned to the loss of absorbed water and crystalline water [19], corresponding to endothermal peaks around 100 °C and 200 °C, respectively, in the DTA curve. The synthesized MnO<sub>2</sub> decomposes rapidly to form Mn<sub>2</sub>O<sub>3</sub> at temperatures beyond 500 °C [19], and there is a corresponding sharp endothermal peak at



Fig. 1 Typical TG-DTA behavior of synthesized manganese oxide

about 520 °C in the DTA curve.

Figure 2 shows the XRD patterns of the products after being annealed at 350 °C for 6 h. The samples were poorly crystallized with broad peaks at 37.1° and 42.6°, indicating the formation of  $\alpha$ -MnO<sub>2</sub> (JCPDS No. 44–0141). There are no diffraction peaks of Mn<sub>2</sub>O<sub>3</sub>. This confirms that MnO<sub>2</sub> does not decompose to Mn<sub>2</sub>O<sub>3</sub> at a temperature of 350 °C or below, which is in good agreement with the TG-DTA result. The broad diffraction peaks of the sample indicate that its particle size should be small.



Fig. 2 XRD patterns of as-synthesized products

The FTIR spectrum of the MnO<sub>2</sub>/CNT is shown in Fig. 3. The broad peak around 2 940 cm<sup>-1</sup> is attributed to stretching vibration of H—O—H and the weak peaks at about 1 080 cm<sup>-1</sup>, 1 540 cm<sup>-1</sup> and 1 602 cm<sup>-1</sup> are assigned to bending vibration of the O—H group, relating to the presence of trace absorbed and crystalline water molecules occluded in the solid during the synthesis of the material [17]. The peak at 513 cm<sup>-1</sup> can be assigned to the Mn—O bending vibration of  $\alpha$ -MnO<sub>2</sub> [20–21], which is related to the vibration of MnO<sub>6</sub> octahedron. No peak of P123 was observed, which



Fig. 3 FTIR spectrum of as-prepared MnO<sub>2</sub>/CNT

suggests that the surfactant can be completely removed by washing.

#### 3.2 Morphology characterization

HRTEM images of MnO<sub>2</sub>/CNT are presented in Fig. 4. It can be seen that agglomerated MnO<sub>2</sub> particles



**Fig. 4** HRTEM images of MnO<sub>2</sub>/CNT: (a) TEM images of MnO<sub>2</sub>/CNT; (b), (c) HRTEM images of MnO<sub>2</sub>

with an average size of 50-150 nm were attached to the CNTs. The adjacent MnO<sub>2</sub> nanorods are 10 nm in diameter and 30–50 nm in length (Fig. 4(c)), which are mixed together irregularly. The effect of surfactant P123 in this study can be speculated as follows. Mn<sup>2+</sup> first coordinates with the surfactant to form Mn<sup>2+</sup>-P123 complex. When the Mn<sup>2+</sup> is oxidized by KMnO<sub>4</sub>, the MnO<sub>2</sub> particles grow along the surfactant chains, forming nanorods. These nanorods pile up and form clew shapes, which can be seen in Fig. 4(a).

#### 3.3 Electrochemical characterization

Electrochemical properties of the as-synthesized  $\alpha$ -MnO<sub>2</sub> nanostructures were investigated in rechargeable Li-MnO<sub>2</sub> cells. Figure 5 shows the first discharge behaviors and cycling performances of the laboratory-made Li-MnO<sub>2</sub> and Li-MnO<sub>2</sub>/CNT cells. Both of the Li-MnO<sub>2</sub> and Li-MnO<sub>2</sub>/CNT cells show a flat plateau in the voltage of 2.8 V in the first discharge curves, and the discharge capacities reach 223.4 mA·h/g and 275.3 mA·h/g (The capacity of CNTs is excluded from the electrode in this work), respectively. These values are much higher than those of  $\alpha$ -MnO<sub>2</sub> nanofibers



Fig. 5 First discharge curves of  $MnO_2$  and  $MnO_2/CNT$  electrodes in Li-MnO<sub>2</sub> cells (a) and discharge capacities of  $MnO_2$  and  $MnO_2/CNT$  over the first 25 cycles (b) (Voltage: 3.5–2.0 V, current rate: 30 mA/g)

fabricated by combining template-based method and sol-gel chemistry [22], which delivered a first capacity of 183 mA $\cdot$ h/g and a stabilized capacity of 134 mA $\cdot$ h/g after 10 cycles.

The synthesized MnO<sub>2</sub>/CNT also exhibits favorable cyclic stability, and retains a considerable capacity of 203.0 mA·h/g after 25 cycles. The  $\alpha$ -MnO<sub>2</sub> delivers a first discharge capacity of 223.4 mA·h/g and retains only 102.9 mA·h/g after 25 cycles, indicating 54% loss of capacity. But we also can see from Fig. 5 that the discharge capacities of the second cycle are much lower than those of the first one. This is likely due to the fact that a fraction of the lithium ions inserted during the initial discharge becomes locked within the crystal structure of MnO<sub>2</sub> for lattice stabilization purpose [22].

The rate performances of the  $MnO_2$  and  $MnO_2/CNT$  electrodes were also investigated, their discharge curves and cycling performance are shown in Fig. 6. The discharge capacity of  $MnO_2$  and  $MnO_2/CNT$  electrodes at the current rate of 200 mA/g in the range of 3.5-2.0 V are 166.1 mA·h/g and 200 mA·h/g, respectively. After 10 cycles, the capacity retention ratios of  $MnO_2$  and  $MnO_2/CNT$  electrodes are 57.5% and 81.5%. The  $MnO_2/CNT$ 



Fig. 6 Discharge curves of  $MnO_2$  and  $MnO_2/CNT$  electrodes (a) and their cycling performance (b) at 200 mA/g in range of 3.5-2.0 V

CNT electrode exhibits excellent rate capability and capacity retention.

The enhanced electrochemical performances of the  $\alpha$ -MnO<sub>2</sub>/CNT can be ascribed to nanorods structures and improved conductivity by inducing highly conductive CNTs. The poor crystalline  $\alpha$ -MnO<sub>2</sub> nanorods might possess high surface areas [22], to provide more active sites for the contact between electrode material and electrolyte [23], shortening Li<sup>+</sup> diffusion distance. The conductive CNTs can facility electron transport to the MnO<sub>2</sub> nanorods, and the unique geometric nanostructure and electrical properties of CNTs significantly promote the dispersion of MnO<sub>2</sub> nanorods with strong interaction [24]. So we can conclude that the  $\alpha$ -MnO<sub>2</sub>/CNT nanostructrue is beneficial to faster diffusion kinetics and decreases electrode polarization.

Figure 7 presents typical Nyquist plots of  $MnO_2$  and  $MnO_2/CNT$  electrodes obtained before the first discharge. As can be seen from Fig. 7, the  $MnO_2/CNT$  electrode has a much smaller charge transfer resistance than the  $MnO_2$  electrode, which indicates that CNTs improve the electrical conductivity of  $MnO_2$  electrode. The smaller charge transfer resistance is also a contributor for the enhanced electrochemical performances mentioned above.



Fig. 7 Electrochemical impedance results of  $\alpha$ -MnO<sub>2</sub> and MnO<sub>2</sub>/CNT electrodes

# **4** Conclusions

1) MnO<sub>2</sub>/CNT nanocomposite was successfully synthesized by soft template method, and its application for rechargeable lithium batteries was studied.

2) The products have poor crystalline characteristics, and the adjacent nanorods are fused to each other irregularly to form spherical-like agglomerations. The  $MnO_2$  nanorods are absorbed on CNTs in the  $MnO_2/CNT$  composite.

3) The MnO<sub>2</sub>/CNT electrode delivers a much larger discharge capacity and better cyclic stability and rate capability than pure  $\alpha$ -MnO<sub>2</sub>.

# References

- ARMAND M, TARASCON J M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6861): 359–367.
- [2] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemical Society, 1997, 144(4): 1188–1194.
- [3] CHUNG S Y, BLOKING J T, CHIANG Y M. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nature Materials, 2002, 1(2): 123–128.
- [4] JIAO F, BRUCE P G. Mesoporous crystalline β-MnO<sub>2</sub>—A reversible positive electrode for rechargeable lithium batteries [J]. Advanced Materials, 2007, 19(5): 657–660.
- [5] POIZOT P, LARUELLE S, GRUGEON S, DUPONT L, TARASCON J M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J]. Nature, 2000, 407(6803): 496–499.
- [6] CHAN C K, PENG H, TWESTEN R D, JARAUSCH K, ZHANG X F, CUI Y. Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons [J]. Nano Letters, 2007, 7(2): 490–495.
- [7] SUBRAMANIAN V, BURKE W W, ZHU H, WEI B. Novel microwave synthesis of nanocrystalline SnO<sub>2</sub> and its electrochemical properties [J]. The Journal of Physical Chemistry C, 2008, 112(12): 4550–4556.
- [8] DESILVESTRO J, HAAS O. Metal oxide cathode materials for electrochemical energy storage: A review [J]. Journal of the Electrochemical Society, 1990, 137(1): 5C–19C.
- [9] KIM D K, MURALIDHARAN P, LEE H W, RUFFO R, YANG Y, CHAN C K, PENG H, HUGGINS R A, CUI Y. Spinel LiMn<sub>2</sub>O<sub>4</sub> nanorods as lithium ion battery cathodes [J]. Nano Letters, 2008, 8(11): 3948–3952.
- [10] WU M S, CHIANG P C J, LEE J T, LIN J C. Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries [J]. The Journal of Physical Chemistry B, 2005, 109(49): 23279–23284.
- [11] CHENG Fang-yi, TAO Zhan-liang, LIANG Jing, CHEN Jun. Template-directed materials for rechargeable lithium-ion batteries [J]. Chemistry of Materials, 2008, 20(3): 667–681.
- [12] YAN Jun, FAN Zhuang-jun, WEI Tong, CHENG Jie, SHAO Bo, WANG Kai, SONG Li-ping, ZHANG Mi-lin. Carbon nanotube/MnO<sub>2</sub> composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities [J]. Journal of Power Sources, 2009, 194(2): 1202–1207.

- [13] XU Bin, YE Min-ling, YU Yu-xiang, ZHANG Wei-de. A highly sensitive hydrogen peroxide amperometric sensor based on MnO<sub>2</sub>-modified vertically aligned multiwalled carbon nanotubes [J]. Analytica Chimica Acta, 2010, 674(1): 20–26.
- [14] CHEN Sheng, ZHU Jun-wu, WU Xiao-dong, HAN Qiao-feng, WANG Xin. Graphene oxide-MnO<sub>2</sub> nanocomposites for supercapacitors [J]. ACS Nano, 2010, 4(5): 2822–2830.
- [15] LU Qing, ZHOU Yi-kai. Synthesis of mesoporous polythiophene/MnO<sub>2</sub> nanocomposite and its enhanced pseudocapacitive properties [J]. Journal of Power Sources, 2011, 196(8): 4088–4094.
- [16] WANG Xing-hui, NI Shi-bing, ZHOU Guo, SUN Xiao-lei, YANG Feng, WANG Jun-ming, HE De-yan. Facile synthesis of ultra-long α-MnO<sub>2</sub> nanowires and their microwave absorption properties [J]. Materials Letters, 2010, 64(13): 1496–1498.
- [17] ZHANG Xiong, YU Peng, CHEN Yao, MA Yan-wei. Low-temperature hydrothermal synthesis of α-MnO<sub>2</sub> three-dimensional nanostructures [J]. Materials Letters, 2010, 64(5): 583-585.
- [18] JIANG Rong-rong, HUANG Tao, LIU Jia-li, ZHUANG Ji-hua, YU Ai-shui. A novel method to prepare nanostructured manganese dioxide and its electrochemical properties as a supercapacitor electrode [J]. Electrochimica Acta, 2009, 54(11): 3047–3052.
- [19] OMOMO Y, SASAKI T, WATANABE M. Preparation of protonic layered manganates and their intercalation behavior [J]. Solid State Ionics, 2002, 151(1-4): 243–250.
- [20] YANG Rui-zhi, WANG Zhao-xiang, DAI Lei, CHEN Li-quan. Synthesis and characterization of single-crystalline nanorods of α-MnO<sub>2</sub> and γ-MnOOH [J]. Materials Chemistry and Physics, 2005, 93(1): 149–153.
- [21] JULIEN C M, MASSOT M, POINSIGNON C. Lattice vibrations of manganese oxides: Part I. Periodic structures [J]. Spectrochimica Acta Part A, 2004, 60(3): 689–700.
- [22] SUGANTHA M, RAMAKRISHNAN P A, HERMANN A M, WARMSINGH C P, GINLEY D S. Nanostructured MnO<sub>2</sub> for Li batteries [J]. International Journal of Hydrogen Energy, 2003, 28(6): 597–600.
- [23] CHENG Fang-yi, ZHAO Jian-zhi, SONG Wene, LI Chun-sheng, MA Hua, CHEN Jun, SHEN Pan-wen. Facile controlled synthesis of MnO<sub>2</sub> nanostructures of novel shapes and their application in batteries [J]. Inorganic Chemistry, 2006, 45(5): 2038–2044.
- [24] ZHANG Wei-de, XU Bin, JIANG Liao-chuan. Functional hybrid materials based on carbon nanotubes and metal oxides [J]. Journal of Materials Chemistry, 2010, 20(31): 6383–6391.

# 模板法制备纳米 MnO<sub>2</sub>/CNT 复合材料 及其在锂电池中的应用

邹敏敏,艾邓均,刘开宇

中南大学 化学化工学院, 长沙 410083

**摘 要:**以 P123 为表面活性剂,采用软模板法合成 MnO<sub>2</sub>/CNT 纳米复合材料。采用 X 射线衍射、热重和差热分析、傅立叶变换红外光谱分析和高分辨率透射电子显微镜对样品进行表征。结果表明,样品为弱结晶的 α-MnO<sub>2</sub>, 直径约 10 nm,长 30-50 nm,它们附着在碳纳米管壁上。样品的电化学性能通过组成 Li-MnO<sub>2</sub>进行电池充放电和 电化学阻抗测试(EIS),与纯二氧化锰相比,MnO<sub>2</sub>/CNT 纳米复合材料具有更大的初始容量 275.3 mA·h/g 和更好的 倍率和循环性能。

关键词: MnO<sub>2</sub>/CNT; 纳米复合材料; 软模板; 锂二次电池