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Abstract: This study reveals the time-varying spillover effects of higher moments (realized volatility, realized skewness 
and realized kurtosis) and jumps between China’s precious metals and industrial metals markets. Using 5-min 
high-frequency data from May 10, 2012 to October 21, 2021, the dynamic effects of spillovers are uncovered using the 
time−frequency domain spillover index framework. The results show that the system connectedness weakens as the 
moment order gets higher whereas the total jumps connectedness is the smallest, and the spillovers of all estimators are 
more evident in the short term. The overall information spillovers are time-varying and influenced by major market 
events. Specifically, for realized volatility, copper is the largest net transmitter and silver is always a net transmitter, 
while zinc is the largest net receiver. For realized skewness, copper is the largest net transmitter and silver is always a 
net transmitter, while lead is the largest net receiver. For realized kurtosis and jumps, copper is the largest net 
transmitter, while aluminum is the largest net receiver. Overall, copper and silver play dominant roles in China’s 
precious and industrial metals markets system. 
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1 Introduction 
 

The issue of commodity financialization has 
been more and more considered by many  
researchers [1−4], and the financialization of metals 
is an important part of it [5−9]. Precious metals are 
usually included in portfolio, such as gold, which is 
widely recognized by its role as a safe haven for 
investors in financial and commodity markets. 
Same as precious metals, industrial metals may 
arouse investors’ interest in portfolio allocation  
and diversified returns. Understanding spillovers 
between precious metals markets and industrial 
metals markets can serve as a useful analytical tool 
for portfolio allocation and risk management. 

Spillovers among metals markets have been 

analyzed by a series of academic literature. 
AL-YAHYAEE et al [10] examine the volatility 
spillover among precious metals and non-ferrous 
metals, showing that aluminum is the highest 
transmitter to shocks in the LME (London Metal 
Exchange) metal markets. CINER et al [11] employ 
the spillover index method to study the risk 
spillovers among global base metals, and find 
strong return and volatility transmission among 
these markets. REHMAN and VO [12] investigate 
the presence of returns integration between energy 
commodities, precious metal commodities, and 
industrial metal commodities. A common limitation 
of those studies is that they only discuss spillover 
effects based on the first and the second moments 
of the asset return distribution, namely return   
and volatility. However, given that assets return 
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distributions are generally non-normal, skewed, and 
fat-tails, the studies on spillovers which neglect 
higher moments, such as skewness and kurtosis, are 
in fact incomplete in terms of empirical inferences 
on cross-assets or cross-markets linkages [13]. DAI 
et al [14] show that the three-order moment of oil 
price returns can predict the aggregate stock market 
returns. Additionally, the jump risk can capture the 
discontinuous and large volatile characterization  
of assets, and contains more unique pricing 
information compared to the volatility risk [15]. 
Therefore, it is deserved to examine cross-markets 
transmission of higher moments and jumps risk. 
Motivated by the above discussion and the related 
research gap, we carry out academic debate 
especially from the aspect of China’s precious 
metals and industrial metals markets. Specifically, 
we choose two precious metals including gold and 
silver, and four industrial metals including copper, 
aluminum, lead and zinc. 

There are few studies paying attention to 
spillovers of higher moments. Earlier studies on 
risk spillovers of higher moments mainly focus on 
the stock and currency market [16−19]. As the 
research progresses, spillovers on higher moments 
among commodity markets have attracted more 
attention [20−23]. However, these studies mainly 
focus on spillovers in the time domain. To reveal 
potential heterogeneity of spillovers across various 
frequencies, we extend the debate by investigating 
spillovers in higher moments and jumps not only in 
time domain but also in frequency domain. 

DIEBOLD and YILMAZ [20,23] propose a 
spillover framework based on the generalized 
forecast error variance decompositions (GFEVD) 
associated with a VAR system (DY method, 
hereafter). This approach provides the measures of 
the magnitude and direction of the spillovers, 
allowing measuring the level of systemic risk,   
and several studies emphasize its empirical 
advantages [24−26]. More recently, BARUNÍK and 
KŘEHLÍK [27] have expanded the DY approach by 
combining the Fourier transform technique, which 
allows computing the forecast error variance 
decompositions in different frequency domains (BK 
method, hereafter). Hence, the BK method provides 
a new perspective to further understand system 
spillover from frequency domain aspect. Recent 
studies combine DY and BK methods to explore the 
pattern of connectedness across different markets. 

MENSI et al [28] investigate the volatility spillover 
among 28 commodity futures markets in both time 
and frequency domains, showing that the total 
spillover is higher in the short term. WANG      
et al [29] examine return spillovers among gold, 
wheat, crude oil and copper via DY and BK 
methods, finding that copper is information 
transmitter to other commodity futures. Using daily 
data from November 2018 to June 2020, LE      
et al [30] use both DY and BK method to examine 
the volatility connectedness of returns series. In this 
work, we follow DY and BK frameworks to 
examine the magnitude and direction of spillovers 
in time domain and different frequency domains, 
enabling a more comprehensive investigation of 
spillovers in higher moments and jumps across 
precious metals and industrial metals markets. 

Scholars have conducted a series of studies on 
the risk spillover between precious metals markets 
and industrial metals markets. Some progress has 
been achieved, while some deficiencies remain. 
Most of the studies on this topic limit to focus on 
return spillover or volatility spillover only, and 
there are few studies on higher moments or jumps 
risk spillover. Regarding the research perspective, 
most relevant studies are based on the time domain, 
and the relationship between precious metals and 
industrial metals under different frequency domains 
has rarely been investigated. However, under 
various time scales, market responses are 
heterogenous, leading to different mutual spillover 
effects among markets. Thus, it is necessary to 
explore the spillovers among precious metals and 
industrial metals in both time and frequency 
domains. This study pays special attention to risk 
spillovers based on higher moments and jumps 
among China’s precious and industrial metals 
markets.  
 
2 Methodology 
 
2.1 High frequency data and daily realized 

estimators 
We employ 5-min high-frequency data for  

gold, silver, copper, aluminum, lead and zinc. The 
data are derived from Wind database. The data 
period is from May 10, 2012 to October 21, 2021, 
according to its availability. For each trading day t, 
the 𝑖 th 5-min intraday return is defined as the 
logarithmic difference between two consecutive 



Cai YANG, et al/Trans. Nonferrous Met. Soc. China 32(2022) 1362−1384 1364

observed prices within a day, namely pt,i−1 and pt,i, 
shown as follows:  

, , , 1lg lg ,  1,  ,  t i t i t ir p p i T−= − =              (1) 
 
where rt,i denotes the ith intraday return, pt,i is the 𝑖th intraday price for the day t, and T is the total 
number of intraday returns during the trading day t. 

For each trading day t, the realized volatility 
RVt, which is referred to the estimator of the second 
realized moment and represents the dispersion risk 
of the price process, is calculated by the following 
expression:  

2
,

1
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T

t t i
i

r
=

=                              (2) 
 

Subsequently, detection scheme proposed by 
DUONG and SWANSON [31] is applied to 
detecting jumps, which depend on the selection of 
the jump-robust realized volatility estimator. Using 
the threshold bi-power variation as a jump-robust 
realized volatility estimator [32], the jump statistic 
is defined as  
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for the realized tri-power quarticity and converges 
in probability to integrated quarticity. The threshold 
bi-power variation (TBPVt) as a jump-free volatility 
estimator is calculated as  
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where I{.} stands for an indicator function. 

A jump is statistically significantly different 
from zero if (TBPV)ZJ t  exceeds the appropriate 
critical value of the standard gaussian distribution. 
Further, the jump component of realized volatility is 
constructed as  

( ){ }TBPVZJ
| RV TBPV |

t
t t tJ I

αΦ<
= −              (5) 

where I{.} is an indicator function of (TBPV)ZJ t  
exceeding a given critical value of a Gaussian 
distribution denoted by αΦ , at significant level α. 

The skewness, which is the third moment and 
measures the asymmetry of the conditional asset 
return distribution, can be used as a proxy for jump 

risk or crash risk [3,4]. For assets with fatter left 
tails, the skewness has a negative value, and for 
assets with fatter right tails, the skewness has a 
positive value. The realized skewness can be 
constructed using high-frequency data as follows:  
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The kurtosis, which is the fourth moment and 
used as a measure of “tailedness” of the conditional 
asset return distribution, corresponds to the 
extremity of deviations [33]. Kurtosis captures the 
discontinuous component of quadratic variation. 
The realized kurtosis is constructed as follows:  
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T r
==
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                         (7) 
 

Table 1 presents the descriptive statistics of the 
four estimators, namely realized volatility, realized 
skewness, realized kurtosis, and jumps over the 
entire sample period. The mean values of the 
realized volatility and realized kurtosis are greater 
than those of the realized skewness and jumps. The 
skewness values of most of series are positive, 
suggesting that most of series are right-skewed. 
Except for volatility series, the kurtosis values of 
the other series are greater than 3, suggesting that 
most of series have heavy tails. The Jarque−Bera 
test results show that all series depart from a normal 
distribution at the 1% significance level. ADF test 
results show that all series are stationary at 1% 
significance level. 

 
2.2 Spillover index framework in time domain 

Under the time-domain framework of 
DIEBOLD and YILMAZ [23], the DY spillover 
index and additional spillover measures are based 
on a vector autoregression (VAR) model and 
generalized forecast error variance decomposition 
(GFEVD). 

The DY framework starts by building a VAR(p) 
model as follows:  

( )t t tL= +X XΦ ε                        (8) 
 
where Xt represents the n × 1 vector of endogenous 

variables at time t, 
1

( )
p

h
h

h
L L

=
=Φ Φ  is an n × n 

autoregressive coefficient matrix with the pth lag 
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Table 1 Descriptive statistics of four estimators 

Estimator Metal 
Parameter 

Mean Std.dev. Min Max Skew Kurt Jarque−Bera ADF 

RV  
(Panel A) 

Gold 0.454 0.718 0.000 11.746 5.979 56.271 361434.091*** −7.708*** 

Silver 1.288 2.123 0.000 31.476 4.836 37.232 161608.993*** −4.908*** 

Copper 0.771 1.18 0.000 25.157 7.888 114.908 1469171.05*** −8.017*** 

Aluminum 0.63 1.135 0.001 25.144 7.991 120.883 1623745.27*** −5.533*** 

Lead 0.887 1.371 0.000 22.521 5.739 54.684 340972.596*** −5.064*** 

Zinc 1.071 1.822 0.001 59.509 14.833 416.587 19048792.8 *** −4.918*** 

Estimator Metal 
Parameter 

Mean Std.dev. Min Max Skew Kurt Jarque−Bera ADF 

RSK 
(Panel B) 

Gold 0.037 2.376 −8.515 9.578 −0.081 1.951 417.454*** −53.079***

Silver 0.088 2.192 −9.472 8.645 −0.039 2.496 679.996*** −53.386***

Copper −0.010 1.850 −8.303 7.98 −0.247 2.883 933.046*** −24.882***

Aluminum 0.021 1.494 −8.142 8.014 0.151 2.064 474.245*** −26.946***

Lead −0.048 1.754 −7.208 6.734 0.108 1.170 154.165*** −52.108***

Zinc 0.050 1.570 −6.675 8.188 0.095 2.357 609.258*** −38.029***

Estimator Metal 
Parameter 

Mean Std.dev. Min Max Skew Kurt Jarque−Bera ADF 

RKU 
(Panel C) 

Gold 13.191 14.239 1.689 97.574 2.394 6.223 6735.680*** −6.277*** 

Silver 12.038 12.971 1.923 95.848 2.707 8.352 10823.773*** −8.148*** 

Copper 9.168 9.654 1.47 76.018 3.257 12.821 22591.397*** −11.177***

Aluminum 7.567 6.68 1.366 73.539 3.482 17.852 40106.226*** −7.962*** 

Lead 9.078 7.586 1.506 63.486 2.547 8.367 10482.721*** −11.133***

Zinc 7.789 7.27 1.521 74.927 3.492 16.250 34168.571*** −9.788*** 

Estimator Metal 
Parameter 

Mean Std.dev. Min Max Skew Kurt Jarque−Bera ADF 

JUMPS 
(Panel D) 

Gold 0.177 0.478 0.000 8.564 7.503 80.954 740319.02*** −5.801*** 

Silver 0.442 1.207 0.000 19.623 6.135 54.661 342760.01*** −4.800*** 

Copper 0.188 0.553 0.000 10.713 8.248 109.236 1332879.9*** −11.514***

Aluminum 0.093 0.527 0.000 23.174 32.859 1400.826 214774310*** −16.959***

Lead 0.181 0.553 0.000 12.126 9.396 141.210 2216253.9*** −5.566*** 

Zinc 0.224 1.200 0.000 51.890 31.818 1317.261 189939567*** −22.667***
This table presents the descriptive statistics of realized volatility, realized skewness, realized kurtosis and jumps over the sample period, May 
10, 2012 to October 21, 2021. The number of daily observations is 2631. The Jarque−Bera statistic tests are for the null hypothesis of 
normality for the distribution of the series. The ADF statistics are for the null hypothesis that the series has a unit root. *** denotes rejection 
of the null hypothesis at the 1% significance level 
 

order, L is the lag operator, εt represents a white 
noise vector with zero mean, and its covariance 
matrix is∑. 

Let us suppose that the covariance in this VAR 
model is stable; hence, the moving average form 

can be shown as  

( )
1

t t i t i t
i

L
∞

−
=

= = +X Ψ ε Ψ ε ε                 (9) 
 
where Ψ(L) is an n × n moving average coefficient 
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matrix with an infinite lag order. 
In the DY framework, the GFEVD of 

H-step-ahead forecast is presented as  

( )
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where Ψh is an n × n moving average coefficient 
matrix with the pth lag order, and kk kkσ = Σ . We 
normalize ( )jk Hθ  as  
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where ( )jk Hθ  signifies the contribution of the 
variable k to the variance of H-step-ahead forecast 
error of variable j. This is representative of the 
standard directional spillover effect. 

The total spillover measures the forecasting 
variance caused by other variables in the system 
and is defined as follows:  

( )

( )
, 1,

, 1

100

n

jk
j k j k

H n

jk
j k

H
C

H

θ

θ

= ≠

=

= ×







                (12) 

 
The TO spillover transmitted from variable 𝑗 

to all other variables is  
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The FROM spillover received from all other 

variables to variable j is  
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The net spillover of variable j is the difference 

between TO and FROM spillovers:  
( ) ( ) ( )H j H j H jC C C⋅← ← ⋅= −                (15) 
 

The net pairwise spillover between variable j 
and k is  

( ) ( ) ( )
100 kj jk
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C
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          (16) 

2.3 Spillover index framework in frequency 
domain 
Extending the DY framework, BARUNÍK  

and KŘEHLÍK [27] develop a new measure of 
connectedness in the frequency domain based   
on the spectral representation of the GFEVD. A 
frequency response function ( )ieΨ ω− = ie h

h
h

Ψω−  

is obtained from a Fourier transform, where 
i 1= − , and ω is the frequency. The share of a 
shock to variable k in the fluctuations of variable j 
at the frequency ( π,π)ω ∈ −  is expressed as  
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To obtain the GFEVD at different frequencies, 

BARUNÍK and KŘEHLÍK [27] weight the 
( ( )) jkf ω  by the frequency share of variance of the 
variable j. The weighting function is 
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Given a frequency band d=(a, b), a, b ∈

( π, π)− , the GFEVD at frequency band d is 
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The normalized ( )jk dθ  is calculated by  
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where ( )jk dθ  represents the directional spillover 
from variable k to variable j at frequency band d.  
It should be noted that the forecast horizon is 
unrelated to this framework. 

Using the above-mentioned directional 
connectedness at frequency band d, the frequency 
overall connectedness (spillovers) can be calculated 
as  
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Similarly, the TO connectedness is 
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The FROM connectedness is  

( ) ( )
( )

( )
, 1

 
1,

, 1

100

n

jkn
j kF

d jk nj
k j k

jk
j k

d
C d

θ
θ

θ

=
← ⋅

= ≠

=

 
= ×   

  ∞










  (23) 

 
The net connectedness of variable j is  

( )   ( ) ( )F F F
d d j d jjC C C⋅ ← ← ⋅= −               (24) 

 
3 Empirical analysis 
 

Firstly, we study the static time−frequency 
connectedness of realized higher moments 
(volatility, skewness, and kurtosis) and jumps 
among the six metals markets. Secondly, we turn to 
the time−frequency dynamics of connectedness to 
investigate time-varying movements adopting a 
rolling-window method. Lastly, we construct the 
time−frequency connectedness networks to reveal 
net spillovers of all pairs of markets. 

Under the time-domain DY framework, 
forecast horizon is kept in 100 d. Under the 
frequency-domain BK framework, two types of 
time scales are considered, corresponding to high 
frequency (1−22 d) and low frequency (more than 
22 d). The window size is kept in 250 d. 
 
3.1 Static information spillover effect 

The results of volatility spillovers among the 
six metals markets are shown in Table 2, using the 
DY and BK models in Panels A and B, respectively. 
Panel A shows that the total volatility spillover 
index for the system is 45.67%. Copper is the 
largest volatility spillover transmitter, contributing 
to others at 10.64%; zinc is the largest receiver, 
receiving 8.85% from others. The highest spillover 
occurs from silver to gold (29.34%), and the second 
highest spillover occurs from gold to silver 
(25.35%). Panel B shows the total volatility 
spillover indices at high- and low-frequency bands 
are 30.44% and 15.23%, respectively. Evidently, the 
level of volatility spillover in the short term (at high 
frequency) is higher than that in the long term (at 
low frequency). This finding suggests that the 

volatility connectedness across these markets is 
driven by the short-term effect, which is consistent 
with MENSI et al [28]. In the short term, copper is 
the largest volatility transmitter and receiver. In the 
long term, copper is the largest volatility transmitter 
whereas zinc is the largest volatility receiver. These 
findings indicate that copper is a strong transmitter 
in the system, which accords with CINER et al [11]. 
Besides, both in short and long terms, the highest 
directional spillover between two markets occurs 
between gold and silver. Such finding suggests that 
close volatility transmission happens between gold 
and silver markets, which confirms the result 
reported by previous study [34]. 

Table 3 shows the skewness spillover results of 
the DY and BK models among the six metals 
markets. It is seen that the total skewness spillover 
index for the system is 35.91% from Panel A, 
revealing a rather strong degree of skewness 
interdependence among these markets. Silver and 
zinc are the two largest transmitters of skewness 
spillovers, whereas silver is the largest receiver of 
skewness spillovers. The two highest spillovers 
from one market to another are reported between 
gold and silver markets: The share of volatility 
transmitted from silver to gold is 34.74% and that 
transmitted from gold to silver is 32.89%. Panel B 
indicates that the total skewness spillover indices  
at high- and low-frequency bands are 34.37%   
and 1.54%, respectively. The level of skewness 
spillover at high frequency is higher than that at low 
frequency. Similar to the results in the time domain, 
we find both at two frequency bands that silver and 
zinc are the two largest transmitters, whereas silver 
is the largest receiver. Besides, the highest 
directional spillover is from silver to gold and the 
second highest directional spillover is from gold to 
silver. These results are quite regular. They indicate 
that silver is the largest skewness transmitter and 
receiver, as well as a close transmission between 
gold and silver markets and the skewness shocks 
mainly spill over from silver to gold. 

The kurtosis spillover results of the DY and 
BK models are shown in Table 4. From Panel A, we 
see that the total kurtosis spillover index for the 
system is 31.58%. Silver and copper are the two 
largest transmitters of kurtosis spillover, and silver 
and gold are the two largest receivers. Of these, 
silver is the largest kurtosis spillover transmitter 
and receiver. The highest kurtosis spillover occurs  
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Table 2 Volatility spillover results (%) 

Model Receiver 
Transmitter 

FROM 
Gold Silver Copper Aluminum Lead Zinc 

Panel A:  
DY (2012) 

Gold 60.77 29.34 4.86 1.48 1.56 1.99 6.54 

Silver 25.35 63.44 5.04 2.09 2.14 1.93 6.09 

Copper 3.56 3.9 48.97 14.58 14.91 14.08 8.5 

Aluminum 1.12 2.51 18.06 54.1 12.48 11.74 7.65 

Lead 1.03 1.89 18.28 11.58 51.79 15.43 8.03 

Zinc 1.34 1.8 17.59 12.7 19.65 46.91 8.85 

TO 5.4 6.57 10.64 7.07 8.46 7.53 45.67 

NET −1.14 0.48 2.13 −0.58 0.42 −1.32  

Model Receiver 
Transmitter 

FROM 
Gold Silver Copper Aluminum Lead Zinc 

Panel B:  
BK (2018) 

Frequency 1  
(High frequency):  

1 month 

Gold 52.61 23.42 4.12 1.36 1.45 1.84 5.37 

Silver 19.1 43.83 3.92 1.78 1.87 1.65 4.72 

Copper 2.68 3.07 36.41 10.05 10.51 9.78 6.01 

Aluminum 0.93 1.62 11.3 37.56 6.95 6.55 4.56 

Lead 0.86 1.53 10.25 5.82 31.41 9.05 4.58 

Zinc 1.2 1.51 10.8 6.44 11.23 36.11 5.2 

TO_ABS 4.13 5.19 6.73 4.24 5.33 4.81 30.44 

NET −1.24 0.48 0.72 −0.32 0.75 −0.39  

Model Receiver 
Transmitter 

FROM 
Gold Silver Copper Aluminum Lead Zinc 

Panel B:  
BK (2018) 

Frequency 2  
(Low frequency):  

more than 1 month 

Gold 8.17 5.92 0.74 0.11 0.11 0.15 1.17 

Silver 6.26 19.61 1.12 0.31 0.27 0.29 1.37 

Copper 0.88 0.83 12.56 4.54 4.4 4.29 2.49 

Aluminum 0.19 0.88 6.75 16.54 5.53 5.19 3.09 

Lead 0.16 0.35 8.04 5.77 20.38 6.38 3.45 

Zinc 0.14 0.29 6.79 6.26 8.43 10.8 3.65 

TO_ABS 1.27 1.38 3.91 2.83 3.12 2.72 15.23 

NET 0.1 0.01 1.42 −0.26 −0.33 −0.93  
The “FROM” column, “TO” row (or “TO_ABS” row), and “NET” row refer to the FROM connectedness, TO connectedness, and NET 
connectedness, respectively. The jkth value is the directional connectedness from k to j 
 
from silver to gold, and the second highest spillover 
occurs from gold to silver, which are 30.1% and 
29.25%, respectively. As shown in Panel B, the  
total kurtosis spillover indices at high- and low- 
frequency bands are 29.46% and 2.13%, 
respectively. The level of kurtosis spillover at high 
frequency is higher than that at low frequency, 
which is similar to the results for volatility and 
skewness spillovers. At two frequency bands, the 

results are exactly consistent with those in the time 
domain, whether in the case of the largest 
transmitters, the largest receivers, or the markets 
where the highest directional spillover occurs. 
These findings indicate silver and copper are the 
two largest kurtosis transmitters. Moreover, a close 
transmission between gold and silver markets is 
verified again. The kurtosis shocks mainly spill 
over from silver to gold. 
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Table 3 Skewness spillover results (%) 

Model Receiver 
Transmitter 

FROM
Gold Silver Copper Aluminum Lead Zinc 

Panel A:  
DY (2012) 

Gold 63.2 34.74 0.7 0.49 0.43 0.45 6.13 

Silver 32.89 59.73 3.31 1.68 0.87 1.52 6.71 

Copper 0.67 3.41 60.52 10.55 7.85 17 6.58 

Aluminum 0.52 2 12.27 69.76 4.82 10.62 5.04 

Lead 0.49 1.04 9.21 4.87 71.12 13.26 4.81 

Zinc 0.53 1.74 17.07 9.14 11.34 60.18 6.64 

TO 5.85 7.15 7.09 4.45 4.22 7.14 35.91 

NET −0.28 0.44 0.51 −0.59 −0.6 0.51  

Model Receiver 
Transmitter 

FROM
Gold Silver Copper Aluminum Lead Zinc 

Panel B: 
 BK (2018); 
Frequency 1  

(High frequency):  
1 month 

Gold 60.28 33.08 0.68 0.47 0.41 0.43 5.85 

Silver 31.42 57 3.17 1.59 0.83 1.45 6.41 

Copper 0.65 3.29 57.67 10.06 7.54 16.25 6.3 

Aluminum 0.5 1.93 11.77 66.29 4.63 10.19 4.84 

Lead 0.47 1 8.85 4.63 67.7 12.63 4.6 

Zinc 0.53 1.71 16.42 8.76 10.89 57.43 6.38 

TO_ABS 5.59 6.83 6.81 4.25 4.05 6.83 34.37 

NET −0.25 0.42 0.52 −0.58 −0.55 0.44  

Model Receiver 
Transmitter 

FROM
Gold Silver Copper Aluminum Lead Zinc 

Panel B: 
 BK (2018); 
Frequency 2  

(Low frequency):  
more than 1 month 

Gold 2.92 1.65 0.02 0.02 0.02 0.02 0.29 

Silver 1.47 2.73 0.14 0.09 0.04 0.07 0.3 

Copper 0.02 0.12 2.85 0.49 0.31 0.75 0.28 

Aluminum 0.02 0.07 0.5 3.47 0.19 0.43 0.2 

Lead 0.02 0.04 0.36 0.24 3.42 0.63 0.22 

Zinc 0.01 0.03 0.66 0.38 0.45 2.75 0.25 

TO_ABS 0.26 0.32 0.28 0.2 0.17 0.32 1.54 

NET −0.03 0.02 −0.00 −0.00 −0.05 0.06  
 

The jumps spillover results of the DY and BK 
models are reported in Table 5. Panel A shows that 
the total jumps spillover index for the system is 
18.00%. Silver is the largest jumps spillover 
transmitter contributing to others at 4.55%; gold is 
the largest receiver, receiving 4.41% from others. 
The highest jumps spillover occurs from gold to 
silver, and the second highest spillover occurs from 
silver to gold, which are 24.76% and 23.62%, 
respectively. Panel B shows that the total jumps 
spillover indices at high- and low-frequency bands 

are 16.01% and 1.99%, respectively. The jumps 
connectedness weakens as the frequency band 
increases, which is similar to the spillover results of 
above three estimators. In the short term, silver acts 
mainly as a jumps spillover transmitter, whereas 
gold acts as a jumps spillover receiver. In the long 
term, copper is the largest transmitter, whereas 
silver is the largest receiver. Additionally, both in 
short and long terms, the largest directional 
spillover between two markets occurs between gold 
and silver. These findings indicate silver and copper  
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Table 4 Kurtosis spillover results (%) 

Model Receiver 
Transmitter 

FROM 
Gold Silver Copper Aluminum Lead Zinc 

Panel A: 
DY (2012) 

Gold 62.76 30.1 2.56 1.09 1.53 1.96 6.21 

Silver 29.25 61.23 3.91 1.76 1.54 2.32 6.46 

Copper 2.6 4.02 66.09 7.4 5.75 14.14 5.65 

Aluminum 1.18 2.1 8.48 77 4.23 7.01 3.83 

Lead 1.73 1.69 6.78 4.07 76.45 9.28 3.92 

Zinc 2.03 2.5 14.16 6.07 8.25 67 5.5 

TO 6.13 6.73 5.98 3.4 3.55 5.78 31.58 

NET −0.08 0.27 0.33 −0.43 −0.38 0.28  

Model Receiver 
Transmitter 

FROM 
Gold Silver Copper Aluminum Lead Zinc 

Panel B: 
BK (2018); 
Frequency 1  

(High 
frequency):  

1 month 

Gold 58.59 27.89 2.3 1.01 1.37 1.78 5.73 

Silver 27.21 57.18 3.55 1.63 1.38 2.11 5.98 

Copper 2.43 3.77 62.24 6.78 5.53 13.18 5.28 

Aluminum 1.1 2.06 7.85 71.85 3.91 6.5 3.57 

Lead 1.62 1.62 6.6 3.77 71.23 8.78 3.73 

Zinc 1.9 2.39 13.23 5.66 7.8 62.9 5.16 

TO_ABS 5.71 6.29 5.59 3.14 3.33 5.39 29.46 

NET −0.01 0.31 0.31 −0.43 −0.4 0.23  

Model Receiver 
Transmitter 

FROM 
Gold Silver Copper Aluminum Lead Zinc 

Panel B: 
BK (2018); 
Frequency 2 

(Low 
frequency): 
more than 1 

month 

Gold 4.17 2.21 0.26 0.09 0.16 0.18 0.48 

Silver 2.03 4.05 0.35 0.13 0.16 0.21 0.48 

Copper 0.17 0.25 3.85 0.61 0.22 0.96 0.37 

Aluminum 0.08 0.05 0.63 5.15 0.32 0.51 0.26 

Lead 0.11 0.07 0.18 0.3 5.22 0.5 0.19 

Zinc 0.13 0.1 0.93 0.41 0.45 4.1 0.34 

TO_ABS 0.42 0.45 0.39 0.26 0.22 0.39 2.13 

NET −0.06 −0.03 0.02 −0.01 0.02 0.06  
 
are the two largest jumps transmitters as well as a 
close transmission between gold and silver markets. 

To sum up, the total volatility, skewness, 
kurtosis and jumps spillover indices in the     
time domain are 45.67%, 35.91%, 31.58% and   
18.00%, respectively. We notice that the system 
connectedness weakens as the moment order gets 
higher whereas the total jumps connectedness is the 
smallest among the results of four risk estimators. 
These results are confirmed by BOURI et al [22], 
which claims that spillovers of volatility are more 
dominant than spillovers of the other realized 

estimators in terms of the linkages’ strength. From 
the perspective of frequency domain, the 
connectedness of all realized estimators on 
high-frequency band contributes most to their 
respective total one, indicating that information 
transmission is relatively quick across metals 
markets. The results of the four estimators highlight 
the significance of silver and copper market in the 
system. It is understandable given that silver and 
copper play important roles in China’s metal futures 
markets. Silver, which has industrial and hedging 
attribute is the most important metal in terms of  
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Table 5 Jumps spillover results (%) 

Model Receiver 
Transmitter 

FROM
Gold Silver Copper Aluminum Lead Zinc 

Panel A:  
DY (2012) 

Gold 73.56 24.76 1.01 0.11 0.19 0.37 4.41 

Silver 23.62 74.24 1.36 0.19 0.27 0.32 4.29 

Copper 1.21 1.45 80.02 3.46 6.25 7.61 3.33 

Aluminum 0.11 0.32 6.29 91.03 0.83 1.42 1.49 

Lead 0.46 0.37 7.66 0.41 87.37 3.73 2.11 

Zinc 0.45 0.39 7.81 0.58 5.00 85.76 2.37 

TO 4.31 4.55 4.02 0.79 2.09 2.24 18.00 

NET −0.1 0.25 0.69 −0.70 −0.01 −0.13  

Model Receiver 
Transmitter 

FROM
Gold Silver Copper Aluminum Lead Zinc 

Panel B:  
BK (2018); 
Frequency 1 

(High 
frequency): 

1 month 

Gold 68.02 22.70 0.96 0.11 0.19 0.37 4.05 

Silver 21.39 63.95 1.18 0.18 0.26 0.28 3.88 

Copper 1.18 1.37 73.16 3.07 5.66 6.70 3.00 

Aluminum 0.11 0.32 5.2 84.21 0.64 1.17 1.24 

Lead 0.46 0.35 6.53 0.36 79.54 3.44 1.86 

Zinc 0.45 0.37 6.72 0.54 3.79 78.41 1.98 

TO_ABS 3.93 4.18 3.43 0.71 1.76 1.99 16.01 

NET −0.12 0.30 0.44 −0.53 −0.10 0.01  

Model Receiver 
Transmitter 

FROM
Gold Silver Copper Aluminum Lead Zinc 

Panel B:  
BK (2018); 
Frequency 2 

(Low 
frequency): 
more than 
 1 month 

Gold 5.54 2.05 0.05 0.00 0.00 0.00 0.35 

Silver 2.23 10.29 0.18 0.00 0.01 0.04 0.41 

Copper 0.03 0.08 6.87 0.39 0.59 0.91 0.33 

Aluminum 0.00 0.01 1.09 6.82 0.19 0.25 0.26 

Lead 0.00 0.01 1.13 0.06 7.82 0.29 0.25 

Zinc 0.00 0.02 1.09 0.04 1.20 7.35 0.39 

TO_ABS 0.38 0.36 0.59 0.08 0.33 0.25 1.99 

NET 0.02 −0.05 0.26 −0.17 0.08 −0.15  

 
trading volume in the Shanghai Futures Exchange. 
Copper futures market is the most mature and stable 
market in China’s industrial metal futures markets. 
Thus, silver and copper somewhat dominate 
spillovers in higher moment and jump risks among 
China’s metal nexus. We conclude that shocks 
mainly spill over from silver to gold, which is 
different from the prevalent conclusion that silver is 
a spillover receiver of gold in the international 
metal futures market. This may be because silver 
has a higher trading status than gold in China’s 

metal futures market (Authors collect and analyze 
the total annual trading volumes of metal futures in 
SHFE. Data are obtained from the Wind database). 
In addition, the dominators revealed via the four 
estimators are not the same, probably because 
information transmission of various higher moment 
and jumps follows different patterns [22]. 
 
3.2 Dynamic overall spillovers 

Figure 1 shows that the total volatility 
connectedness index of the system varies over the  
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Fig. 1 Overall volatility spillover indices in time− 
frequency domain: (a) Dynamic overall spillover;     
(b, c) Dynamic frequency connectedness F

dC  with 
frequency band d1∈[3.14,0.14] and frequency band d2∈

[0.14,0.00], respectively 
 
sample period. The total volatility spillover is 
fluctuant generally ranging 35%−80% and reaches 
over 80% six times. In November 2016, the total 
spillover reached two high points of over 80% with 
fluctuations in copper and lead markets. It is also 
clearly seen that the total volatility spillover 

reached two high points of over 80% again in June 
and July 2019, when gold and silver markets were 
in a strong uptrend. In March 2020, affected by the 
COVID-19 outbreak, copper prices fluctuated and 
fell heavily, and the overall volatility spillover 
index rose to 80%. In October 2021, the spillover 
rose to 80% for the last time. At that time, Nyrstar, 
the world’s largest zinc smelter, announced a large 
production cut, sparking a surge in global zinc 
prices and leading to a surge in industrial metals 
prices. In general, it is obviously seen that volatility 
spillover index is influenced by market risk events. 
In volatility frequency connectedness, as shown in 
Figs. 1(b, c), spillovers at high-frequency band are 
higher than those at low-frequency band, which 
indicates that total volatility spillover among 
precious metals and industrial metals markets is 
mostly driven by the transmission of shocks in the 
short term. This phenomenon means that markets 
reactions to shocks occur principally in the short 
term in the system. The spread of shocks in the 
short term means that contagion effects exist in 
metals markets, which is similar to traditional asset 
classes such as stocks [35]. It is notable that many 
spillover peaks show up at low-frequency band. 
This probably implies that market risk events not 
only brought short-term fluctuations to the markets, 
but also affect the markets for more than a month, 
leading to large spillovers in the short and long 
terms. 

Figure 2 presents the overall skewness 
connectedness in the time−frequency domain. 
Overall, the total skewness spillover ranges from  
25% to 50%, which is lower and more stable than 
the total volatility spillover in general. In the whole 
sample period, the peak of the total skewness index 
appeared around 2016. After the China’s stock 
market crash in 2015, macro risk appetite of global 
markets boosted in 2016, commodity markets 
fundamentals improved in general, and base metal 
prices mostly rebounded from recent lows. Zinc, in 
particular, is the best performing metal. Improved 
metals markets conditions and close market linkage 
are reflected in the increase of skewness spillover. 
Spillovers at high-frequency band are higher   
than those at low-frequency band, indicated by 
Figs. 2(b, c). Additionally, the short-term spillover 
has similar features to the overall skewness 
spillover, which reflects that the market interaction 
is more significant in the short term. 
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Fig. 2 Overall skewness spillover indices in time− 
frequency domain: (a) Dynamic overall spillover;     
(b, c) Dynamic frequency connectedness F

dC  with d1∈

[3.14, 0.14] and d2∈[0.14, 0.00], respectively 
 

Figure 3 presents the overall kurtosis 
connectedness in the time−frequency domain over 
time. As shown in Fig. 3(a), the total kurtosis 
spillover ranges from 20% to 50%, which is lower 
than the total volatility spillover in general, and 

 

 
Fig. 3 Overall kurtosis spillover indices in time− 
frequency domain: (a) Dynamic overall spillover;     
(b, c) Dynamic frequency connectedness F

dC  with d1∈

[3.14, 0.14] and d2∈[0.14, 0.00], respectively 
 
similar to the total skewness spillover. The highest 
kurtosis spillovers showed up during 2015 with 
Chinese economic slowdown, weak demand and 
low base metal prices. Market risk conditions 
enhance kurtosis spillover. Focusing on the 
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dynamics of kurtosis frequency connectedness    
in Figs. 3(b, c), the largest portion of total 
connectedness occurs at the high-frequency band. 
The maximum total spillover reaches close to 50% 
in the short term compared to the value less than  
10% in the long term, which implies that short-term 
effect plays a leading role in the transmission of 
kurtosis shocks. This phenomenon is the same    
as that of volatility and skewness frequency 
connectedness. 

Figure 4 presents the overall jumps 
connectedness in the time−frequency domain over 
time. Similar to the total volatility spillover, the 
total jumps spillover ranges from 20% to 80% with 
several distinct peaks. In mid-July 2013, the total 
spillover reached the first peak of over 80% with 
China’s gold and silver futures launching night 
trading and trading volumes increasing. The overall 
jumps spillover index rose to 80% at the second 
time in March 2014 as aluminum prices plumped. 
The total volatility spillover reached over 80% 
again in late November 2016, when lead markets 
were in an uptrend. The total spillover reached the 
fourth peak of over 80% in April 2018, at that time, 
the United States announced the implementation of 
sanctions on Russian aluminum enterprises, which 
triggered a sharp shock in international aluminum 
prices. China’s aluminum prices rose rapidly driven 
by the strong international market. At the end of the 
month, with the easing of sanctions, aluminum 
prices gradually declined. In October 2021, the 
jumps spillover rose to 80% for the last time with a 
surge in industrial metals prices. Market risk events 
evidently enhance jumps spillover. In jumps 
frequency connectedness, as shown in Figs. 4(b, c), 
similar to the frequency connectedness results of 
the above three estimators, the magnitude of the 
short-term spillover is larger than that of the 
long-term spillover. It is notable that high spillovers 
showed up at both two frequency bands in mid-July 
2013, during China’s gold and silver futures 
launching night trading. This probably indicates 
that the night trading of gold and silver not only 
brought short-term fluctuations to the markets, but 
also influenced the markets more than 1 month, 
leading to large spillovers in the short and long 
terms. 

Overall, spillovers of higher moment and 
jumps among precious metals and industrial metals 
markets are time-varying and influenced by major  

 

 
Fig. 4 Overall jumps spillover indices in time−frequency 
domain: (a) Dynamic overall spillover; (b, c) Dynamic 
frequency connectedness F

dC  with d1∈[3.14, 0.14] and 
d2∈[0.14, 0.00], respectively 
 
market events, which are revealed in the dynamic 
overall spillover indices. This finding confirms the 
results reported by BOURI et al [22], which states 
that dynamic risk spillovers under different realized 
moments are sensitive to major market events. In 
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addition, total spillovers of volatility and jumps 
have many distinct high peaks compared to those of 
skewness and kurtosis, which implies that the 
dynamic links in volatility and jumps are more 
volatile. The spillovers are more evident at higher 
frequency, which suggests that market interaction is 
more significant in the short term. 

To examine whether the results are sensitive to 
rolling-window size in spillover framework, we 
conduct the robustness test of the overall spillovers 
for all realized estimators in the time−frequency 
domain using two rolling-window sizes (i.e., 200 
and 300 d). Our results are not influenced by    
the rolling-window size. For the sake of brevity,  
we present these results in Figs. A1−A4 in the 
Appendix. 
 
3.3 Dynamic net directional spillovers 

To further investigate the dynamic behavior of 
realized volatility, skewness, kurtosis and jumps 
spillover effects of each market, we study the net 
directional spillover of gold, silver, copper, 
aluminum, lead and zinc accordingly. 

Figure 5 presents the net volatility spillover 
effects over time in the time−frequency domain. 
Shown by Figs. 5(a1−a6), the net directional 
spillover of copper is mainly positive and that of 
aluminum is mainly negative, which indicates that 
gold serves as a net transmitter while aluminum 
serves as a net receiver throughout the period. In 
June 2019, gold market exhibited net spillover of up 
to 60%. At that time, the Shanghai gold index hit a 
past six-year high in the midst of a bull market for 
gold. In July 2019, silver had more than 60% net 
volatility spillover, since China’s and international 
silver markets were in a strong uptrend. At the 
above two time points, four industrial metals 
markets became receiver of volatility spillover, 
suggesting that volatility shocks spilled over   
from precious metals to industrial metals. In 
mid-November 2016, the net spillover of copper 
reached a distinct peak of over 20%. At that time, 
infrastructure plan boosted the price of base metals, 
copper led the price rise of base metals, but 
speculative forces sentiment and policy attitude 
swing causing copper prices fluctuated alternately. 
Similar copper price fluctuation occurred in the 
middle and late March of 2020, when the net 
spillover index reached 30%. Copper prices fell to 
the lowest point of that year due to the COVID-19 

outbreak, and macro policy stimulus and 
fundamental news were mixed, leading copper 
market fluctuant. As for aluminum market, 
aluminum prices were sagging in March 2014, and 
the net spillover of aluminum reached a peak of 
over 20%. Lead had a net volatility spillover effect 
of about 40% in late November 2016. It was a peak 
demand season but supply contracted, and the entry 
of speculative capital led to an increase in lead 
prices. At the same time, aluminum exhibited a  
net spillover of −12.5%, indicating that volatility 
spillover occurred from lead market to aluminum 
market. In October 2021, it is clearly seen that the 
net spillover of zinc reached over 80% while the 
remaining five markets acted as spillover receivers. 
At that time, Nyrstar’s plan to cut zinc production 
triggered a chain reaction of soaring industrial 
metal prices. A few days later, however, weak 
demand brought negative feedback, industrial metal 
prices fell back under pressure. The peaks of overall 
spillover and net spillover in the time domain are 
almost consistent, while the dynamics of net 
spillover reveals how the spillover effects are 
transmitted among these markets. Next, we 
consider Figs. 5(b1−b6) which represent the results 
of net spillovers at high and low frequencies. Net 
spillovers in the short term are more pronounced. 

Figure 6 presents the net skewness spillover 
effects over time in the time-frequency domain. 
Compared to the range of net volatility spillover, 
the range of net skewness spillover is relatively 
narrow. During the period, silver, copper and zinc 
usually act as net information transmitters, while 
gold, aluminum and lead are net information 
receivers. Especially, the net spillovers of silver and 
copper are mostly positive while those of aluminum 
and lead are mostly negative throughout the sample 
period. This result signifies that silver and copper 
are powerful net skewness spillover transmitter   
in this system. Silver showed continuous high 
overflow during the silver market downturn in 2018. 
In contrast, copper exhibited continuous high 
spillovers during 2015 when copper market was  
in a large number of transactions. These results 
indicate that net skewness spillovers are affected by 
extreme market conditions. From Figs. 6(b1−b6), we 
clearly see that short-term net spillovers play an 
overwhelmingly dominant role. 

Figure 7 presents the net kurtosis spillover 
effects over time in the time-frequency domain. 
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Fig. 5 Net directional volatility spillover indices in time−frequency domain: (a1−a6) Dynamic time domain net spillover; 
(b1−b6) Dynamic net spillover at two frequency bands, d1∈[3.14, 0.14] and d2∈[0.14, 0.00] 
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Fig. 6 Net directional skewness spillover indices in time−frequency domain: (a1−a6) Dynamic time domain net spillover; 
(b1−b6) Dynamic net spillover at two frequency bands, d1∈[3.14, 0.14] and d2∈[0.14, 0.00] 



Cai YANG, et al/Trans. Nonferrous Met. Soc. China 32(2022) 1362−1384 1378
 

 
Fig. 7 Net directional kurtosis spillover indices in time−frequency domain: (a1−a6) Dynamic time domain net spillover; 
(b1−b6) Dynamic net spillover at two frequency bands, d1∈[3.14, 0.14] and d2∈[0.14, 0.00] 
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Similar to the range of results of net skewness 
spillover, the range of net kurtosis spillover is 
narrow. Silver mainly acts as net kurtosis 
transmitter, while aluminum mainly as net kurtosis 
receiver in the whole sample period. In particular, 
during 2015 Chinese stock market crash, copper 
and zinc exhibited continuous positive spillovers to 
other markets. Probably because copper and zinc 
are the most important industrial metals in terms of 
trading volume in the Shanghai Future Exchange in 
2015, and the kurtosis spillover of them matters to 
that of the other markets. From Figs. 7(b1−b6), we 
see that the net spillovers are more evident in the 
short term relative to those in the long term. 

Figure 8 presents the net jumps spillover 
effects over time in the time−frequency domain. 
The range of net jumps spillover is relatively wide 
with some distinct high peaks, similar to that of net 
volatility spillover. Shown by Fig. 8, silver and 
copper mainly serve as net transmitters while 
aluminum mainly serves as a net receiver 
throughout the period. In mid-July 2013, gold had 
more than 60% net volatility spillover with China’s 
gold and silver futures launching night trading and 
trading volumes increasing, the remaining five 
markets became jumps spillover receivers at that 
point. In early June 2016, silver market exhibited 
net spillover about 10%. At that time, Britain’s exit 
from the European Union increased economic 
uncertainty, risk aversion drove precious metals 
prices higher, and silver led the price rise of 
precious metals. Silver had about 15% net jumps 
spillover in late July 2020, when silver rose to its 
highest level since 2013 as tensions between the US 
and China spurred demand for safe-haven assets. In 
addition, European green recovery plan also 
boosted demand for silver, an important element of 
environmentally friendly industry. By the way, 
silver prices increased whether under the 
background of rising risk aversion or strong 
industrial demand, which reflects that silver with 
hedging and industrial attribute is favored in the 
metals markets. In mid-November 2016, the net 
jumps spillover of copper reached over 10% with 
copper prices fluctuating alternately. Affected by 
the COVID-19 outbreak, copper price fluctuation 
occurred again in the second half of March 2020, 
when the net jumps spillover index reached 10% 
again. As for aluminum, it had about 60% net 
volatility spillover twice in late March 2014 and 

April 2018 with prices fluctuated falling. At the 
same time, the remaining five markets all acted as 
jumps spillover receivers. The net spillovers of lead 
reached peak of over 60% in late November 2016 
with lead prices fluctuated strongly, and that of zinc 
reached peak of over 80% in mid-October 2021 as 
zinc market was volatile. During the above two 
periods, the remaining metals markets became 
receiver of jumps spillover. The net spillover 
indices of the six markets clearly figure out which 
markets dominate and when. Similar to the results 
of the above three estimators in frequency domain, 
net jumps spillovers are more significant in the 
short term. 

On the whole, in terms of net spillovers of all 
realized higher moments and jumps over the whole 
rolling period, silver and copper markets are the 
main net transmitters, whereas aluminum market is 
the main net receiver. The results of net spillover 
clearly reflect how the spillover effects of the   
four estimators are shaped among precious and 
industrial metals markets. From the perspective of 
frequency domain, the short-term net spillovers of 
the four estimators are more evident than the 
long-term net spillovers, according with the 
previous conclusions in Sections 3.1 and 3.2. 
 
3.4 Connectedness networks 

We construct networks to analyze the pairwise 
net spillovers of all pairs in the time and frequency 
domains. The connectedness networks of volatility, 
skewness, kurtosis and jumps in the time−frequency 
domain are drawn in Figs. 9−12, respectively. The 
directions of the arrows represent a positive net 
directional connectedness among the markets. The 
thicker the arrow lines are, the stronger the 
connectedness between two pairwise nodes is. 

In the volatility connectedness network 
(Fig. 9), it is clearly seen from the DY results that 
copper, silver and lead are net transmitters, while 
zinc, gold and aluminum are net receivers. Among 
them, copper is a main net transmitter, and zinc is a 
main net receiver. Besides, copper market is a net 
volatility transmitter of the other five markets, 
while gold market is a net receiver of volatility with 
respect to the other five markets. The BK results 
show that in the short term, lead plays a leading role 
in the volatility connectedness, and becomes a 
transmitter of the other five markets; whereas gold 
is a receiver of the other five markets. In the long 
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Fig. 8 Net directional jumps spillover indices in time−frequency domain: (a1−a6) Dynamic time domain net spillover; 
(b1−b6) Dynamic net spillover at two frequency bands, d1∈[3.14, 0.14] and d2∈[0.14,0.00] 
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term, copper exhibits stronger volatility spillover. In 
particular, copper and silver are always net 
volatility spillover transmitters and zinc and 
aluminum are always receivers in the time domain 
and two frequency domains. 

In the skewness connectedness network 
(Fig. 10), the DY results show that copper, zinc and 
silver are net transmitters, and lead, aluminum and 
gold are net receivers. Silver is a transmitter of the 
other five markets, and lead is a receiver of the 
other five markets. From the BK results, in the 
high-frequency connectedness network, copper, 
zinc and silver are still transmitters; silver is a 
transmitter whereas lead is a receiver with respect 
to the other five markets. These findings are similar 
to the static time domain network, indicating that 
systematic skewness spillover is a short-term  
effect. In the low-frequency connectedness network, 
copper changes its role to a receiver, which 
indicates that copper transmits skewness shocks 
mainly in the short term. Zinc is a transmitter of the 
other five markets. Overall, silver and zinc are 
always net spillover transmitters, and lead, 
aluminum and gold are always receivers in the time 
domain and at the two frequencies considered. 

In the network of kurtosis connectedness 

(Fig. 11), the DY results show that copper, zinc and 
silver play as a net transmitter to other markets. 
Silver is a transmitter of the other five markets, and 
aluminum is a receiver of the other five markets. 
From the BK results, the connectedness network in 
the short term is similar to the static time domain 
network, whether in the case of transmitters or 
receivers, which suggests that systematic kurtosis 
spillover is a short-term effect. In the long term, 
zinc exhibits stronger kurtosis spillover and is a 
transmitter of the other five markets, while gold is a 
receiver of the others. Generally, copper and zinc 
are always a net kurtosis spillover transmitter, while 
aluminum and gold are always net receivers in the 
time domain and the two frequency domains. 

In the jumps connectedness network (Fig. 12), 
it is clear from the DY results that copper and silver 
are net transmitters, the remaining metals are net 
receivers. Silver is a transmitter of the other five 
markets. The BK results show that in the 
high-frequency connectedness network, copper, 
silver and zinc are net transmitters, and silver is a 
transmitter of the other five market. In the 
low-frequency connectedness network, copper still 
remains strong jumps net spillovers and becomes  
a transmitter of the other five markets. In the time  

 

 
Fig. 9 Volatility connectedness network in time−frequency domain (Each node represents a metal market. Red nodes 
represent net information transmitters, while green nodes represent net information receivers. Frequencies 1 and 2 
represent 1–22 d and more than 22 d, respectively) 
 

 
Fig. 10 Skewness connectedness network in time−frequency domain 
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Fig. 11 Kurtosis connectedness network in time−frequency domain  
 

 

Fig. 12 Jumps connectedness network in time−frequency domain  
 
domain and two frequency domains, copper is 
always net jumps spillover transmitter and 
aluminum is always receiver. 

To sum up, we observe that in the volatility 
connectedness network, copper and silver have the 
core status and contribute the most to volatility 
spillover. Zinc is the largest net volatility spillover 
receiver. In the skewness connectedness network, 
copper is the largest net skewness spillover 
transmitter and silver is always a net transmitter in 
the time domain and both two frequency domains, 
while lead is the largest skewness receiver. In the 
kurtosis connectedness network, copper is the 
largest net kurtosis spillover transmitter and 
aluminum is the largest net kurtosis spillover 
receiver. In the jumps connectedness network, 
copper is the most influential jumps spillover 
sources, while aluminum is the largest receiver 
from the other markets. These findings demonstrate 
copper and silver play a dominant role in precious 
and industrial metals markets. 
 
4 Conclusions 
 

(1) In the static analysis, the total volatility, 
skewness, kurtosis and jumps spillover indices are 
45.67%, 35.91%, 31.58% and 18%, respectively. 

The system connectedness weakens as the moment 
order gets higher whereas the total jumps 
connectedness is the smallest. Additionally, the 
connectedness of all risk estimators at 
high-frequency band contributes most to their 
respective total one. 

(2) The dynamic analysis shows that the 
overall information spillovers in the system of 
precious and industrial metals are time-varying and 
influenced by major market events. The net 
spillovers are more evident at higher frequency, 
suggesting that market interaction is more 
significant in the short term. 

(3) For volatility, copper is the largest net 
transmitter and silver is always a net transmitter in 
the time and frequency domains, while zinc is the 
largest net receiver. For skewness, copper is the 
largest net transmitter and silver is always a net 
transmitter in the time and frequency domains, 
while lead is the largest net receiver. For kurtosis 
and jumps, copper is the largest net transmitter, 
while aluminum is the largest net receiver. Overall, 
copper and silver play a dominant role in the 
precious and industrial metals system. 
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中国贵金属和工业金属市场的溢出效应： 

来自高阶矩和跳的证据 
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摘  要：揭示中国贵金属和工业金属市场的高阶矩(已实现波动，已实现偏度和已实现峰度)和跳跃的时变溢出效

应。使用 2012 年 5 月 10 日至 2021 年 10 月 21 日的 5-min 高频数据，并基于时频域溢出指数框架揭示溢出的动

态效应。研究结果表明，系统连通性随着高阶矩阶数的增加而减弱，而总跳跃连通性最小，且所有指标的溢出效

应均在短期更加显著。系统总信息溢出随时间变化并受重大市场事件的影响。具体而言，对于波动溢出，铜是最

大的净发出者，银始终是时域和频域上的净发出者，而锌是最大的净接收者；对于偏度溢出，铜是最大的净发出

者，银始终是时域和频域上的净发出者，而铅是最大的净接收者；对于峰度溢出和跳跃溢出，铜是最大的净发出

者，而铝是最大的净接收者。总体上，铜和银在中国贵金属和工业金属市场中占据主导地位。 

关键词：溢出；贵金属；工业金属；时频域分析；高阶矩；跳跃 
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