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Abstract: Electrochemical machining (ECM) is one of the important non-traditional machining processes, which is used for 
machining of difficult-to-machine materials and intricate profiles. Being a complex process, it is very difficult to determine optimal 
parameters for improving cutting performance. Metal removal rate and surface roughness are the most important output parameters, 
which decide the cutting performance. There is no single optimal combination of cutting parameters, as their influences on the metal 
removal rate and the surface roughness are quite opposite. A multiple regression model was used to represent relationship between 
input and output variables and a multi-objective optimization method based on a non-dominated sorting genetic algorithm-II 
(NSGA-II) was used to optimize ECM process. A non-dominated solution set was obtained. 
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1 Introduction 
 

Metal matrix composites (MMC) are gaining 
increasing attention for applications in aerospace, 
defense, and automobile industries. These materials have 
been used in automobile brake rotors and various 
components in internal combustion engines. The 
limitation of MMC is that the machining of these 
composites is very difficult due to the highly abrasive 
nature of ceramic reinforcements [1]. Non-conventional 
machining techniques, such as electro-discharge 
machining (EDM), laser beam machining (LBM), 
electron beam machining (EBM) and electrochemical 
machining (ECM) have been utilized for machining [2]. 
Electrochemical machining (ECM) is a non-traditional 
process used mainly to cut hard or difficult metals, where 
the application of a traditional process is not convenient 
[3]. Optimization techniques are required to identify the 
optimal combination of parameters for maximizing the 
ASOKAN et al [4] optimized metal removal rate (MRR) 
and minimizing the surface roughness in ECM process. 
Quite a few researchers have tried to optimize the 

machining performance by adopting different 
optimization techniques. ASOKAN et al [4] optimized 
metal removal rate and surface finish with grey relational 
analysis and ANN model. ANN model gave a better 
prediction based on the deviation between training and 
testing data sets. MUNDA and BHATTACHARYYA [5] 
determined the optimal combination of the machining 
parameters and their combination effects on the desired 
response criteria. The optimality search model under the 
various process variable conditions for maximizing the 
metal removal rate, minimizing the radial over cut (ROC) 
value of various machined workpieces was formulated 
based on the response surface methodology (RSM). In 
single objective optimization, one attempts to obtain the 
best design or decision, which is usually the global 
minimum or maximum depending on the optimization 
problem. In the case of multiple objectives, there may be 
one solution, which is the best with respect to all 
objectives. In ECM process, it is difficult to find a single 
optimal combination of parameters for both MRR and 
surface roughness as the parameters influence them 
differently. Hence, there is a need for a multi-objective 
optimization method to arrive at the solutions to this 
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problem. Classical methods for solving multi-objective 
problem suffer from drawback. These methods transform 
the multi-objective problem into single objective by 
assigning some weights based on their relative 
importance [6]. Also these classical methods fail when 
the function becomes discontinuous. Since genetic 
algorithm (GA) is a good tool for solving multi-objective 
optimization and it works with a population of points, it 
seems natural to use multi-objective GA in ECM process 
to determine the optimal solution point from the best 
performance to capture a number of solutions 
simultaneously. Multi-objective genetic algorithm 
(MOGA), vector evaluated genetic algorithm (VEGA), 
non-dominated sorting genetic algorithm (NSGA) and 
(NSGA-II) are examples of GA based multi-objective 
solution methods. The non-dominated sorting GA-II 
(NSGA-II) is a fast, elitist multi-objective genetic 
algorithm that is widely used for generating the Pareto 
frontier. Its main advantage in solving multi-objective 
problems is that it leads the search toward the global 
Pareto front while maintaining diversity of the solution 
set along that front. In the present work, the experiments 
are designed using central composite rotatable design 
(CCD). From the experimental data, multiple regression 
models for the metal removal rate and surface roughness 
(Ra) are developed. The machining parameters, 
electrolyte concentration, electrolyte flow rate, applied 
voltage and tool feed rate, are optimized using NSGA-II 
algorithm to maximizing MRR and minimizing surface 
roughness. 

 

2 Experimental 
 

The work material used for the present investigation 
is LM 25Al/15%SiCp composites with dimensions of 30 
mm in diameter and 6 mm in height. The composites 
were manufactured by a stir casting method. The 
experiments were planned using CCD for the design of 
experiments (DOE), which helps to reduce the number of 
experiments. Since the considered factors were 
multi-level variables whose outcome effects were not 
linearly related, it was decided to use five-level test for 
each factor. The machining parameters used and their 
levels are presented in Table 1. The ECM experiments 
were conducted in METATECH ECM equipment. The 
tool was made up of copper with a square cross section. 
The electrolyte used for experimentation was fresh 
sodium nitrate (NaNO3) solution with varying electrolyte 
concentration due to its less throwing power. 
Experiments were conducted according to central 

composite second order rotatable design (CCD) as 
depicted in Table 2. In the present study, the machining 
performance was evaluated by the following responses. 

 
Table 1 Original values of machining parameters 

Level
Electrolyte 

concentration,
 X1/(g·L−1) 

Electrolyte 
flow rate,  

X2/(L·min−1) 

Applied 
voltage,  

X3/V 

Tool feed 
rate, X4/ 

(mm·min−1)

−2 10 5 12 0.2 
−1 15 6 13 0.4 
0 20 7 14 0.6 
1 25 8 15 0.8 
2 30 9 16 1 

 
2.1 Metal removal rate 

Metal removal rate (MRR) is one of the most 
important criterion determining the machining operation, 
with a higher rate always preferred in such operations. 
The metal removal rate is calculated using the following 
expression: 
 

machiningfor  taken Time
loss MassMRR =                (1) 

 
2.2 Average surface roughness 

Surface finish is another important aspect in the 
machining of composites. The average surface roughness 
(Ra), which is mostly used in industry, was taken up for 
the present study. The roughness was measured with a 
sampling length of 10 mm. The average surface 
roughness was measured using a Talysurf tester. The 
experimental results are presented in Table 3. 

 

3 Statistical modeling 
 

The statistical models based on the second-order 
polynomial equations were developed for MRR and Ra 
using the experimental results and are given below: 
 
MRR =−0.5256+0.00028X1+ 0.0459X2 +0.0419X3+ 

0.1029X4−0.000028 X1
2 +0.000023 X2

2− 
0.000036X3

2 +0.00244 X4
2+0.000354 X1X2− 

0.000079X1X3+0.00019 X1X4−0.00323X2X3− 
0.00596X2X4−0.1002X3X4                 (2) 

 
Ra=73.0472−1.0145X1−0.8046X2−8.0862X3+ 

 20.103X4+0.0157X1
2−0.0918X2

2+0.2346X3
2+ 

5.2893X4
2−0.0456X1X2+0.0413X1X3+0.15X1X4+ 

0.2044X2X3−0.0956X2X4−2.2513X3X4           (3) 
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Table 2 Experimental data according to central composite second order rotatable design  

No. X1 X2 X3 X4 MRR/(g·min−1) Ra/µm 

1 −1 −1 −1 −1 0.010 2 5.424 

2 1 −1 −1 −1 0.014 8 4.863 

3 −1 1 −1 −1 0.023 8 5.245 

4 1 1 −1 −1 0.0321 3.436 

5 −1 −1 1 −1 0.028 9 4.652 

6 1 −1 1 −1 0.032 4 4.453 

7 −1 1 1 −1 0.029 1 4.526 

8 1 1 1 −1 0.041 7 4.412 

9 −1 −1 −1 1 0.024 5 4.786 

10 1 −1 −1 1 0.031 2 5.215 

11 −1 1 −1 1 0.033 7 4.621 

12 1 1 −1 1 0.047 8 3.425 

13 −1 −1 1 1 0.040 1 2.174 

14 1 −1 1 1 0.046 8 2.847 

15 −1 1 1 1 0.038 9 2.543 

16 1 1 1 1 0.048 6 2.354 

17 −2 0 0 0 0.028 7 5.352 

18 2 0 0 0 0.037 5 4.542 

19 0 −2 0 0 0.024 2 3.241 

20 0 2 0 0 0.047 8 2.785 

21 0 0 −2 0 0.022 7 5.723 

22 0 0 2 0 0.046 2 2.914 

23 0 0 0 −2 0.027 4 5.249 

24 0 0 0 2 0.045 2 3.204 

25 0 0 0 0 0.032 4 3.426 

26 0 0 0 0 0.034 5 3.217 

27 0 0 0 0 0.032 8 3.241 

28 0 0 0 0 0.034 1 3.475 

29 0 0 0 0 0.036 2 3.232 

30 0 0 0 0 0.035 4 3.442 

31 0 0 0 0 0.037 3 3.324 
 
Table 3 Test results of ANOVA 

Sum of square Mean sum of square F-value  P-value 
Source 

Degree of 
freedom MRR Ra MRR Ra MRR Ra  MRR Ra 

Linear 4 0.002 38 17.981 0.000 03 1.106 6 4.84 23.54  0.009 0.000 

Square 4 0.000 01 6.936 2 0.000 005 1.734 0 0.63 36.88  0.648 0.000 

Interaction 6 0.000 24 5.794 3 0.000 04 0.965 7 5.77 20.54  0.002 0.000 

Lack of fit 10 0.000 09 0.679 4 0.000 007 0.067 9 3.06 5.60  0.092 0.024 

Error 6 0.000 01 0.072 8 0.000 01 0.012 1      

Total 30 0.002 76 31.46 4         
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4 Optimization 
 

To optimize the cutting parameters in the machining 
of GFRP composites, a non-dominated sorting genetic 
algorithm was used. The objective sets for the present 
study were as follows: 1) Maximization of the metal 
removal rate; 2) Minimization of average surface 
roughness (Ra). 

The two-objective genetic algorithm optimization 
method used is a fast, elitist non-dominated sorting 
genetic algorithm (NSGA-II) developed by DEB et al [7]. 
This algorithm uses the elite-preserving operator, which 
favors the elites of a population by giving them an 
opportunity to be directly carried over to the next 
generation [8]. 
 
5 NSGA-II algorithm 
 

The non-dominated sorting genetic algorithm has 
been criticized for its high computational complexity, 
lack of elitism and its choice of the optimal parameter 
value for sharing parameter σ. The NSGA-II is a 
modified version, which has a better sorting algorithm, 
incorporates elitism and does not require the choosing of 
a sharing parameter a priori. There are two key concepts 
in NSGA-II: a fast non-dominated sorting of the 
population and a crowding distance. 
 
5.1 Non-dominated sort 

The initialized population is sorted based on 
non-domination. The non-domination is an individual 
and is said to dominate another if its objective function is 
no worse than the other and at least in one of its 
objective functions is better than the other. The fast-sort 
algorithm was described in Ref. [9]: 
 
5.2 Crowding distance 

In NSGA-II, in addition to the fitness value, a new 
parameter called “crowding distance” is calculated for 
each individual. The crowding distance is a measure of 
how close an individual to its neighbors. Crowding 
distance is assigned front wise: comparing the crowding 
distance between two individuals in a different front is 
meaningless. The basic idea behind the crowding 
distance is finding the Euclidean distance between each 
individual in a front based on their m objectives in 
m-dimensional hyperspace. Initially, a random parent 
population of P0, of size N is generated. The population 
is sorted based on non-domination level. Each solution is 
assigned a fitness level, and the best level is 1. Thus, 
minimization of fitness is assumed. Binary tournament 
selection, recombination and mutation operators are 
implemented to generate the child Q0, of size N. The 

procedure for the remaining generation (for t ≥ 1) can be 
found in Ref. [7]. 

 
6 Discussion 
 

The electrochemical machining characteristics of 
LM25Al/SiCp composites were studied. The second- 
order polynomial models were developed for MRR and 
Ra. The MRR was calculated using Eq. (1). The fit 
summary indicates that the quadratic model is 
statistically significant for analysis of MRR. The value of 
R2 is over 95%, which indicates that the developed 
regression model is adequately significant at a 95% 
confidence level. It provides an excellent relationship 
between the machining parameters and the MRR. An 
analysis of variance (ANOVA) was performed for MRR 
and the results are presented in Table 3. The normal 
probability plot for MRR is presented in Fig.1. It can be 
noticed that the residuals fall on a straight line, which 
means that the errors are normally distributed and the 
regression model is well fitted with the observed values. 
Similarly, the value of R2 for Ra is 97%, which means 
that the regression model provides an excellent 
explanation of the relationship between the independent 
variables (factors) and the response Ra. The associated 
P-value for the model is lower than 0.05 (i.e. level of 
significance α=0.05, or 95% confidence), which 
indicates that the model can be considered statistically 
significant. The ANOVA table for the quadratic model 
for Ra is presented in Table 3. Figure 2 displays the 
normal probability plot for Ra. It is observed that the 
residuals are distributed normally and in a straight line, 
and hence the model is adequate. 

 

 

Fig. 1 Normal probability plot for MRR 
 
In the present work, a non-dominated sorting 

genetic algorithm, NSGA-II, was used to optimize 
multiple performances using the second-order models 
created. The NSGA-II algorithm ranked the individuals 
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Fig. 2 Normal probability plot for Ra 
 
based on dominance. The details are given in section 5 
and also in Ref. [7]. The control parameters in NSGA-II 
were adjusted to obtain the best performance. The 
parameters used are: probability of crossover of 0.9 with 
distribution index of 20, mutation probability of 0.25 and 
population size of 100. It was found that the above 
control parameters produce better convergence and 
distribution of optimal solutions. The 1 000 generations 
were generated to obtain the true optimal solution. The 
non-dominated solution set obtained over the entire 
optimization is shown in Fig. 3. This figure shows the 
formation of the Pareto front leading to the final set of 
solutions. 31 out of 100 sets were presented in Table 4. 
Since none of the solutions in the non-dominated set is 
absolutely better than any other, any one of them is the 
“better solution”. As the best solution can be selected 
based on individual product requirements, therefore the 
process engineer must select the optimal solution from 
the set of available solutions. If the engineer desires to 
have a better surface finish, higher metal removal rate, a 
suitable combination of variables can be selected from 
Table 4. From the experimental results presented in 
Table 2, the parameters listed in the experiment number 
13 lead to minimum Ra of 2.174 µm and the 
corresponding MRR of 0.040 1 g/min, where the 
electrolyte concentration, electrolyte flow rate, applied 
voltage and tool feed rate are 15 g/L, 6 L/min, 15 V and 
0.8 mm/min, respectively. By using NSGA-II, the 
optimized Ra value very close to the experimental value 
has been selected from Table 4. For trail No. 15, the Ra 
value is 2.172 µm and the corresponding MRR is 0.413 
g/min, and the pertinent parameters are electrolyte 
concentration, electrolyte flow rate, applied voltage and 
tool feed rate, which are 17 g/L, 8 L/min, 16 V and   
0.9 mm/min, respectively. This indicates that the values 
obtained from the optimization technique are in close 
agreement with the experimental values and more or less 
for the same parameter settings. 

 

 

Fig. 3 Optimal chart obtained through NSGA-II 
 

The verification of the test results under the selected 
optimum conditions for the cases of MRR and Ra are 
shown in Table 5. The predicted machining performance 
is compared with the actual machining performance and 
a good agreement is obtained between their performance. 
From the analysis of Table 5, it can be observed that the 
calculated error is small. The error between the 
experimental and the predicted values for MRR and Ra 
lie within 4% and 5%, respectively. Obviously, this 
confirms excellent reproducibility of the experimental 
conclusions. 
 
7 Conclusions 
 

1) The ECM process parameters were optimized by 
using non-dominated sorting genetic algorithm 
(NSGA-II), and a non-dominated solution set was 
obtained. The second order polynomial models 
developed for MRR and Ra were used for optimization. 

2) The choice of one solution over the other 
depends on the process engineer’s requirements. If the 
requirement is a better Ra or higher MRR, a suitable 
combination of variables can be selected.  

3) The optimized value of Ra obtained through 
NSGA-II is 2.172 µm and the corresponding MRR is 
0.413 g/min, and the pertinent parameters are electrolyte 
concentration, electrolyte flow rate, applied voltage and 
tool feed rate, which are 17 g/L, 8 L/min, 16 V and   
0.9 mm/min, respectively. 

4) Optimization will help to increase production rate 
considerably by reducing machining time. The objectives 
such as MRR and Ra were optimized using a 
multi-objective optimization method, non-dominating 
sorting genetic algorithm-II. A Pareto-optimal set of 100 
solutions was obtained. 
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Table 4 Optimal combinations of parameters for ECM process 

No. 
Electrolyte 

concentration/(g·L−1) 
Electrolyte 

flow rate/(L·min−1)
Applied 

voltage/V 
Tool feed 

rate/(mm·min−1)
MRR/(g·min−1) Ra/µm 

1 19 5 19 0.9 0.057 3 1.266 

2 12 9 15 0.9 0.023 1 4.541 

3 15 9 15 0.9 0.033 8 3.116 

4 19 8 15 0.9 0.042 8 2.010 

5 18 8 16 0.9 0.041 0 2.217 

6 20 9 15 0.9 0.041 4 1.865 

7 16 8 15 0.9 0.034 7 3.004 

8 18 8 16 0.9 0.040 5 2.276 

9 13 9 15 0.9 0.027 8 3.903 

10 10 9 15 0.9 0.018 1 5.101 

1 13 8 15 1.0 0.027 4 3.952 

15 10 8 16 1.0 0.017 6 5.123 

13 24 8 15 0.9 0.050 0 1.337 

14 15 9 15 0.9 0.031 4 3.418 

15 17 8 16 0.9 0.041 3 2.172 

16 12 8 15 1.0 0.024 7 4.324 

17 21 8 15 0.9 0.045 3 1.740 

18 12 9 15 1.0 0.028 1 4.595 

19 21 8 15 0.9 0.045 6 1.716 

20 19 8 15 0.9 0.042 2 2.077 

21 18 8 16 0.9 0.039 7 2.373 

22 24 8 15 0.9 0.049 7 1.356 

23 14 8 16 0.9 0.030 8 3.497 

24 20 5 16 1.0 0.061 5 1.239 

25 13 9 15 0.9 0.026 5 4.094 

26 13 9 15 0.9 0.028 6 4.867 

27 23 8 15 0.9 0.048 6 1.433 

28 13 8 15 0.9 0.026 8 4.133 

29 14 9 15 0.9 0.029 3 3.716 

30 15 8 16 1.0 0.032 3 3.333 

31 13 8 16 0.9 0.029 8 4.957 

 
Table 5 Validation test results for electrochemical machining of Al/15%SiCp composite using NaNO3 

MRR/(g·min−1) Ra/µm Electrolyte 
concentration/ 

(g·L−1) 

Electrolyte  
flow rate 
(L·min−1) 

Applied  
voltage/ 

V 

Tool feed  
rate/ 

(mm·min−1) Predicted Actual Error/% Predicted Actual Error/%

17 8 16 0.9 0.041 6 0.039 8 4 2.172 2.285 5 
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摘 要：电化学加工(ECM)是一种重要的非传统加工工艺，主要用于加工难加工材料和错综复杂的型材。作为一

个复杂的过程，很难确定最优参数去改善切削性能。金属去除率和表面粗糙度是最重要的输出参数，决定切削

性能。由于切削参数对金属去除率和表面粗糙度的影响不一致，从而没有简单的切削参数的最佳组合。 用多元

回归模型来表示输出与输入变量之间的关系，并用基于需求分类遗传算法 (NSGA-II)的多目标优化方法来优化

ECM 过程，得到一个需求解集。 

关键词：电化学加工；金属去除率；表面粗糙度；需求分类遗传算法(NSGA-II) 
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