

Available online at www.sciencedirect.com

Trans. Nonferrous Met. Soc. China 21(2011) s369-s373

Transactions of Nonferrous Metals Society of China

www.tnmsc.cn

Effect of TiB₂ content on microstructure and mechanical properties of in-situ fabricated TiB₂/B₄C composites

WANG Yu-jin^{1, 2}, PENG Hua-xin², YE Feng¹, ZHOU Yu¹

1. Institute for Advanced Ceramics, School of Materials Science and Engineering,

Harbin Institute of Technology, Harbin 150001, China;

2. Advanced Composites Centre for Innovation and Science (ACCIS), Department of Aerospace Engineering,

Faculty of Engineering, University of Bristol, Queens Building, University Walk, Bristol BS8 1TR, UK

Received 10 May 2011; accepted 25 July 2011

Abstract: The fully dense boron carbide matrix composites containing 10%-40% (volume fraction) TiB₂(TiB₂/B₄C) were in-situ fabricated via chemical reaction of B₄C, TiO₂ and graphite powders at 2 050 °C under a pressure of 35 MPa. Scanning electron microscopy (SEM) and transmission election microscopy (TEM) observations show that the sub-micron/nano-sized TiB₂ particles are uniformly located within the matrix grains and at the B₄C grain boundaries. With the increase of TiB₂ content, the elastic modulus and fracture toughness of composites increase remarkably. However, the situation is reversed for Vickers hardness and flexural strength. The fracture toughness exhibits a maximum value of 8.2 MPa·m^{1/2} for the 40% (volume fraction) TiB₂/B₄C composite. The main toughening mechanisms of TiB₂/B₄C composites are microcrack toughening and crack deflection toughening. **Key words:** TiB₂/B₄C composites; in-situ reaction; toughening mechanisms

1 Introduction

Boron carbide (B₄C) ceramics have been widely used for a variety of structural applications due to their extremely high hardness, wear resistance, low specific gravity and high chemical stability. However, the boron carbide used as a structural material was limited by two major drawbacks, namely, the low fracture toughness of B₄C and the very high temperature required for its sintering. Nearly, fully densification cannot be achieved by pressureless sintering and can be attained in pure B₄C only by hot pressing above 2 300 °C [1]. Many efforts have been made to improve the densification of B₄C by introducing sintering aids including metals (Al, Ti) [2–3], oxides (Al₂O₃, ZrO₂) [4–5] and non-oxides (W₂B₅, TiC) [6–7], as well as B and C [8–9].

Recently, it has been found that the addition of TiO_2 into B_4C along with the stoichiometric amount of C greatly reduces the sintering temperature and increases the toughness and strength [10]. The sintering process involves the conversion of TiO_2 to TiB_2 according to the following reaction:

 $2\text{TiO}_2 + 3\text{C} + B_4\text{C} \rightarrow 2\text{TiB}_2 + 4\text{CO}\uparrow \tag{1}$

The TiB₂ phase serves as a strengthening and toughening agent whose presence results in an increase in bend strength to over 500 MPa [10-15]. A flexural strength of 866 MPa and fracture toughness of 3.2 $MPa{\cdot}m^{1/2}$ were reported for fully dense $B_4C{-}15\%$ (volume fraction) TiB₂ composites prepared from a mixture B₄C/TiO₂/carbon black powders via reactive hot pressing for 1 h at 2 000 °C under a pressure of 50 MPa [16]. A mixture of fine-sized B₄C with 40% (mass fraction) TiO₂ was transformed into a 95% dense B₄C-TiB₂ composite fabricated at 2 160 °C for 1 h [17]. In the present study, in order to improve the mechanical properties of B₄C ceramics, B₄C-TiB₂ composites were in-situ synthesized by hot pressing. Furthermore, the effect of the in-situ TiB2 on microstructure and mechanical properties of TiB₂/B₄C composites was investigated.

2 Experimental

Commercially available B_4C powder with an average particle size of 3.5 µm was used. The B_4C powder was mixed with high purity (99.9%) nano-size TiO₂ (smaller than 50 nm) and graphite powders by

Corresponding author: WANG Yu-jin; Tel: +86-451-86402040-8403; Fax: +86-451-86414291; E-mail: wangyujin_hit@163.com

ball-milling for 12 h using alcohol as a vehicle. Mixing was performed in a plastic jar with agate balls as a milling media. In order to gain the sintered compositions containing 10%, 20%, 30%, and 40% (volume fraction) TiB₂, the levels of TiO₂ and C were adjusted according to the stoichiometry of Eq. (1) (see Table 1 for the green compositions). The blended powders were dried at 75 °C for 20 h. All samples were sintered at 1 850 °C for 0.5 h, and then hot-pressed for 1 h at 2 050 °C under a pressure of 35 MPa in a vacuum of 1.3×10^{-3} Pa. The heating rates were 20 °C/min from room temperature to 1 850 °C and 10 °C/min from 1 850 to 2 050 °C, respectively.

Table 1 Green specimen compositions

Green			Sintered		
w(B4C)/ %	w(TiO ₂)/ %	w(C)/ %	φ(B ₄ C)/ %	φ(TiB ₂)/ %	Theoretical density/ (g·cm ⁻³)
79.42	16.79	3.79	90	10	2.718
65.19	28.41	6.40	80	20	2.916
54.75	36.92	8.33	70	30	3.114
46.77	43.44	9.79	60	40	3.312

Phase structure was identified by X-ray diffraction (XRD) analysis. The bulk density was measured by the Archimedes method. The hardness was evaluated by Vicker's indentation. The flexural strength was measured by a three-point bending test. The fracture toughness was measured by a single edge notch beam test. The polished surfaces were examined by SEM. The microstructure of the composites was investigated by TEM.

3 Results and discussion

All the TiB₂/B₄C composites fabricated by reaction hot-pressing exhibit almost fully densities. The TiB₂ synthesized by in-situ reaction clearly promotes the densification of boron carbide in the sintering process. From XRD analysis, no TiO₂ or C was detected in all of samples (as shown in Fig. 1). Only B₄C and TiB₂ phases were identified, although the presence of a small amount of oxygen or carbon cannot be ruled out.

Typical polished microstructures of various sintered TiB₂/B₄C composites (as shown in Fig. 2), consist of boron carbide (gray) and titanium diboride (white). In all the specimens, TiB₂ particles were dispersed in the B₄C matrix homogeneously. The average B₄C grain size decreases with the increase of TiB₂ volume fraction. The TiB₂ particles inhibit the increase of grain size. Most of grain sizes of the TiB₂ and B₄C are less than 5 μ m. The largest B₄C grains have visible twinned structure (as shown in Fig. 3(a)). These grains might have been

Fig. 1 XRD patterns of TiB_2/B_4C composites

subjected to high internal shear stress in cooling from the elevated temperatures, most likely due to thermal expansion anisotropy. In addition, some dislocation lines or loops were found near the small TiB₂ particles in the B_4C grains (as shown in Fig. 3(b)). It may be attributed to the thermal mismatch between TiB₂ and B₄C. From Figs. 3(c) and (d), the TiB₂ particles can be classified into two types: as above-mentioned small equiaxial nano-sized TiB₂ particles (20-150 nm) confined within larger boron carbide grains, and large, irregularly shaped TiB₂ particles (or particle clusters) located at the grain boundaries or triple junctions. The particles with grain boundary tend to coarsen, while those confined within the grains retain their initial size. This implies that the grain boundary is the major mass-transfer path for TiB₂ coarsening.

The variations of Vicker's hardness (Hv), elastic modulus (*E*), flexural strength and fracture toughness of B_4C/TiB_2 composites with TiB_2 volume fraction are shown in Figs. 4 and 5. The increase of TiB_2 content from 10% to 40% (volume fraction) results in a decrease in Hv due to the lower hardness of TiB_2 than that of B_4C and the rule of mixtures. The elastic modulus increases with increase of TiB_2 content, which is attributable to high elastic modulus for TiB_2 . With adding 40% (volume fraction) TiB_2 , the elastic modulus of the composite is 526 GPa, which is 15% higher than that of 10% (volume fraction) TiB_2/B_4C .

As shown in Fig. 5, the addition of TiB₂ has significant effects on the flexural strength and the fracture toughness of B₄C. The fracture toughness increases steadily with the increase of TiB₂ content, as shown in Fig. 5. The maximum value is 8.2 MPa·m^{1/2} for 40% (volume fraction) TiB₂. It depends upon the presence of uniformly distributed TiB₂ particles and a well sintered fine-grained B₄C matrix. The thermal

Fig. 2 SEM images of polished TiB_2/B_4C composites: (a) $10\%TiB_2/B_4C$; (b) $20\%TiB_2/B_4C$; (c) $30\%TiB_2/B_4C$; (d) $40\%TiB_2/B_4C$

Fig. 3 TEM images of TiB_2/B_4C composites: (a) Twinned structure in B_4C ; (b) Dislocation microstructure near small TiB_2 particles in B_4C grains; (c) Nano-sized TiB_2 particles in B_4C grain; (d) Large TiB_2 particles located at grain boundaries or triple junctions

Fig. 4 Elastic modulus and Vickers' hardness as function of TiB_2 volume fraction for TiB_2/B_4C composites

Fig. 5 Flexural strength and fracture toughness as function of volume fraction of TiB_2 for TiB_2/B_4C composites

expansion mismatch stress developed in cooling to room temperature places the TiB₂/B₄C boundary under the tensile stress and leads to partial or full fracture of the interface due to a large difference in the linear thermal expansion between B₄C and TiB₂. As calculated by SKOROKHOD and KRSTIC [10], the residual stress is about 1 GPa. The large boundary stress is sufficient to break the interface and cause microcracking followed by a partial or full relaxation of the stress. The crack with size less than their presence has positive effects on the fracture toughness. In addition, from Fig. 6, crack deflection occurs around the TiB₂ particles for the 20% (volume fraction) TiB₂/B₄C composite.

Different from fracture toughness, the flexural strength decreases slowly from 526 to 429 MPa with adding 40% (volume fraction) TiB₂. It may weaken the effect of residual stresses and microcracks.

Fig. 6 Crack deflection on 20% (volume fraction) TiB_2/B_4C composite specimen

4 Conclusions

1) TiB_2/B_4C composites exhibit a composite microstructure where TiB_2 particles are dispersed uniformly in a fine grained B_4C matrix.

2) The fracture toughness increases steadily with increasing TiB₂ content, reaching the maximum value of 8.2MPa·m^{1/2} at 40% (volume fraction) TiB₂.

3) The main toughening mechanisms are microcracks toughening and deflection toughening of propagating cracks caused by the thermal expansion mismatch between TiB_2 and B_4C .

References

- TELLE R. In materials science and technology [M]. CAHN R W, HANSEN P, KRAMER J. New York: NY, 1994: 175–258.
- [2] VIALA J C, BOUIX J, GONZALEZ G, ESNOUF C. Chemical reactivity of aluminium with boron carbide [J]. J Mater Sci, 1997, 32: 4559–4573.
- [3] MOGILEVSKY P, GUTMANAS E Y, GOTMAN I, TELLE I. Reaction formation of coatings at boron carbide interface with Ti and Cr powders [J]. J Eur Ceram Soc, 1995, 15: 527–535.
- [4] KIM H W, KOH Y H, KIM H E. Densification and mechanical properties of B₄C with Al₂O₃ as a sintering aid [J]. J Am Ceram Soc, 2000, 83: 2863–2865.
- [5] KIM H W, KOH Y H, KIM H E. Reaction sintering and mechanical properties of B₄C with addition of ZrO₂ [J]. J Mater Res, 2000, 15: 2431–2436.
- [6] ZAKHARIEV Z, RADEV D. Properties of polycrystalline boron carbide sintered in the presence of tungsten boride (W₂B₅) without pressing [J]. J Mater Sci Lett, 1988, 7: 695–696.
- [7] SIGL L S. Processing and mechanical properties of boron carbide sintered with TiC [J]. J Euro Ceram Soc, 1998, 18: 1521–1529.
- [8] ZHAO L, WU L, HUANG Q, YANG Q. Structure of C-B₄C-SiC composites with silicon additive [J]. J Mater Sci Lett, 1996, 15: 353–356.
- KALANDADZE G I, SHALAMBERIDZE S O, PEIKRISHVILI A.
 B. Sintering of boron and boron carbide [J]. J Solid State Chem, 2000, 154: 194–198.

- [10] SKOROKHOD V, KRSTIC V D. High strength-high toughness TiB₂-B₄C composites [J]. J Mater Sci Lett, 2000, 19: 237–239.
- [11] RU Hong-qiang, XU Hai-fei, YU Liang, LÜ Peng. Study on in-suit synthetic TiB₂/B₄C composites by co-precipitating [J]. Rare Metal Materials and Engineering, 2007, 36(s1): 717–720. (in Chinese)
- [12] SUN J L, LIU C X, DUAN C Y. Effect of Al and TiO₂ on sinterability and mechanical properties of boron carbide [J]. Mat Sci Eng A, 2009, 509: 89–93.
- [13] SRIVATSAN T S, GURUPRASAD G, BLACK D, RADHAKRISHNAN R, SUDARSHAN T S. Influence of TiB₂ content on microstructure and hardness of TiB₂-B₄C composite [J]. Powder Technol, 2005, 159: 161–167.
- [14] BOGOMOL I, NISHIMURA T, VASYLKIV O, SAKKA Y,

 $\label{eq:LOBODA} \begin{array}{l} P. & \mbox{Microstructure and high-temperature strength of } B_4C-TiB_2 \mbox{ composite prepared by a crucibleless zone melting method } [J]. J Alloys Compd, 2009, 485: 677–681. \end{array}$

- [15] YUE X Y, ZHAO S M, LÜ P, CHANG Q, RU H Q. Synthesis and properties of hot pressed B₄C-TiB₂ ceramic composite [J]. Mat Sci Eng A, 2010, 527(27–28): 7215–7219.
- [16] YAMADA S, HIRAO K, YAMAUCHI Y, KANZAKI S. High strength B₄C-TiB₂ composites fabricated by reaction hot-pressing [J]. J Eur Ceram Soc, 2003, 23: 1123–1130.

TiB₂ 含量对原位反应合成 **TiB**₂/**B**₄**C** 复合材料的 组织结构和力学性能的影响

王玉金^{1,2}, 彭华新², 叶枫¹, 周玉¹

哈尔滨工业大学 材料科学与工程学院,特种陶瓷研究所,哈尔滨 150001;
 布里斯托大学 工学院 航空系,先进复合材料创新与科学中心,布里斯托 BS8 1TR,英国

摘 要:以B₄C, TiO₂和石墨粉为原料,采用原位反应热压烧结工艺(2 050 °C, 35 MPa, 1 h)制备了致密的 TiB₂ 含量为 10%~40%(体积分数)的 TiB₂/B₄C 复合材料,并对复合材料的组织结构和力学性能进行了研究。扫描电子 显微镜和透射电子显微镜分析结果表明:在B₄C 晶内及晶界处均匀分布着纳米或亚微米级的 TiB₂颗粒,随着 TiB₂ 含量的增加,弹性模量和断裂韧性明显增大,而弹性模量和抗弯强度却随之减小。40%(体积分数)TiB₂/B₄C 复合 材料具有高的断裂韧性,高达 8.2 MPa·m^{1/2},主要增韧机制由微裂纹增韧和裂纹偏转增韧。 关键词: TiB₂/B₄C 复合材料;原位反应;增韧机理

(Edited by LI Yan-hong)