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Abstract: A Mg—8%Al—1%S3i alloy with semisolid microstructure was fabricated by isothermal heat treatment process. The effects
of isothermal process parameters such as holding temperature and holding time on the microstructure of Mg—8%Al—1%Si alloy were
investigated. The results show that a non-dendritic microstructure could be obtained by isothermal heat treatment. With increasing
holding temperature from 560 to 575 °C or holding time from 5 to 30 min, the liquid volume fraction increases, the average size of
a-Mg grains grows larger and globular tendency becomes more obvious. In addition, the Mg,Si phase transforms from Chinese script
shape to granule shape. The morphology modification mechanisium of Mg,Si phase in Mg—8%Al1-1%Si alloy during the semisolid

isothermal heat treatment was also studied.
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1 Introduction

Magnesium alloys are attractive candidates for
automotive and aerospace applications because of their
excellent properties [1,2]. For example, parts of the
Mg—Al-Si series alloys, such as AS21 and AS41 alloys,
have been successfully used in the drive system of
automobile engines [3,4]. The Mg—Al-Si based alloy
containing intermetallic compound Mg,Si has high
melting point, high hardness, high elastic modulus and
low coefficient of thermal expansion (CET) [5-8].
Therefore, Mg,Si can act as the very -effective
strengthening phase in magnesium alloys both at low and
elevated temperatures.

However, Mg,Si phase in the Mg—Al-Si based
alloys is prone to forming undesirable coarse Chinese
script shape, which can deteriorate the mechanical
properties of the magnesium alloys [9,10]. In order to
modify the Chinese script shaped Mg,Si phases, many
extrusion [11-13],

methods such as hot rapid

solidification [14], mechanical alloying [15] and micro-
alloying (Ca, P, Sb and Sr) [16-20] have been studied.
But these methods are too expensive and complex to be
accepted by engineering
application [17,19,21].
Semisolid isothermal heat treatment is a novel
method. Recent research found that the Chinese script
shaped Mg,Si phase in AS91 alloy could be modified to
granule and/or polygon shapes by semisolid isothermal
heat treatment [22,23]. Therefore, the semisolid
isothermal heat treatment can be thought as a potential
method for the modification of Chinese script shaped

community for general

Mg,Si phase in the Mg—Al—Si based magnesium alloys.

In the present work, the effects of isothermal
process parameters on the microstructure of
Mg—8%Al—-1%Si alloys during isothermal heat treatment
were investigated. The purpose was to develop a
simplified method for the modification of Chinese script
shaped Mg,Si phase. It was expected that the preliminary
results can be significant in promoting the fabrication of
high quality Mg—Al-Si alloys.
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2 Experimental

The Mg—8%Al-1%Si alloy was prepared by adding
the following materials: commercial pure Mg (purity >
99.9%), Al (purity >99.8%) and Si (purity >99.4%). The
experimental alloy was melted in a resistance furnace
and then poured into a permanent mould to produce the
ingots. The actual chemical composition of the
experimental alloy was determined by the ARL4460
Metals Analyzer and the result is listed in Table 1.

Table 1 Chemical composition of Mg—8%Al-1%Si alloy
(mass fraction, %)

Al Si Zn Sn Mg
7.837 0.896 0.00641 0.00152 Bal.

Figure 1 shows the DSC curve of Mg—8%Al—-1%Si
alloy. According to Fig. 1, the semisolid isothermal
temperatures of 560, 565, 570 and 575 °C were selected.
Samples were cut from the initial as-cast alloy with
dimensions of 12 mmx12 mmx14 mm, and put into
resistance furnace at selected temperatures and held for 5,
10, 20 and 30 min, respectively, and then they were taken
out for water quenching quickly.
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Fig. 1 DSC curve of as-cast Mg—8%Al—1%Si alloy

The samples (as-cast and semi-solid) were etched
by 4% HNO; in alcohol. The microstructure and
intermetallic phase analyses were investigated by
OLYMPUS optical microscopy (OM). X-ray diffraction
(XRD) (D/Max 2500PC Rigaku, Japan) was utilized for
phase identification. The temperature of the eutectic
reaction was measured using a differential scanning
calorimeter (DSC) (PerkinElmer, USA) at a heating rate
of 5 °C/min. The characteristics of microstructural
evolution, such as liquid volume fraction and average
grain size, were evaluated by image analysis system
(Image-Pro plus).

3 Results and discussion

Figure 2 shows the XRD pattern and microstructure
of the as-cast Mg—8%AIl—1%Si alloy. The XRD result
reveals that the main phases in the as-cast alloy are a-Mg,
Mg,;Al;; and Mg,Si. It can be seen from Fig. 2(b) that
the microstructure of the as-cast alloy is composed of
o-Mg phase, Mg;;Al;, phase and Chinese script shaped
Mg,Si phase. In general, the Mg,Si phases in Mg—AIl-Si
based alloys are prone to forming coarse Chinese script
shape at low solidification rate [9]. Therefore, under the
permanent mould casting in this investigation, the Mg,Si
phase in Mg—8%AIl—-1%Si alloy exhibits coarse Chinese
script morphology.
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Fig. 2 XRD pattern (a) and OM image (b) of as-cast
Mg—8%Al—-1%Si alloy

Figures 3 and 4 show the semisolid microstructures
of Mg—8%Al—-1%S:i alloy after being treated at different
holding temperatures for 30 min and treated at 570 °C
for different holding time. As seen in Fig.3, when the
holding temperature is 560 °C, the liquid phases in
Mg—8%Al-1%Si alloy distribute discontinuously, and
the “liquid islands” are also found inside the a-Mg
grains. With holding temperature increasing from 565 to
575 °C, the amount of liquid islands inside the a-Mg
grains decreases, the amount of liquid phases distributed
along a-Mg grain boundaries increases. Finally, the
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initial as-cast alloy ultimately evolves into non-dendritic
microstructure.

By combining Figs.3 and 4, it is found that with the
increase of holding temperature or time, the liquid
volume fraction increases, the average size of a-Mg
grains grows larger and the spheroidization of a-Mg
grains becomes more and more obvious. The relation of

holding temperature and time on the liquid volume
fraction and the average size of a-Mg grains are shown
in Fig. 5, which is done using the image analysis system.
It is found from Fig. 5 that with the increase of holding
temperature from 560 to 575 °C or holding time from 5
to 30 min, the liquid volume fraction increases and the
average size of a-Mg grains increases, respectively. Then

Fig. 3 OM images showing semisolid microstructures of Mg—8%Al—1%Si alloy held for 30 min at 560 °C (a), 565 °C (b), 570 °C (¢)

and 575 °C (d)

and 30 min (d)
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Fig. 5 Effects of holding temperature (a) and time (b) on liquid volume fraction and average size of a-Mg grains in semisolid

Mg—-8%Al-1%S:i alloy

it is inferred that Mg—8%Al-1%Si alloy with non-
dendritic microstructure can be fabricated by suitable
semisolid isothermal heat treatment.

Figure 6 shows the morphology of Mg,Si in
Mg—8%Al—-1%Si alloy after isothermal heat treatment. It
is observed that the Mg,Si phase in
Mg—8%Al-1%Si exhibits
indicating that the semisolid isothermal heat treatment
can modify the Chinese script shaped Mg,Si phase in the
as-cast Mg—8%Al—1%S:i alloy.

semisolid

alloy granule shapes,

Fig. 6 OM image of Mg,Si in Mg—8%Al—-1%Si alloy after
isothermal heat treatment

Since the melting temperature of Mg,Si phase is
1085 °C [11], the modification of Chinese script shaped
Mg,Si phases can not be obtained in molten state during
the semisolid isothermal heat treatment. There is
curvature fluctuation on the surface of Mg,Si phases
because the fluctuation of the temperature and solute
concentration exists during the solidification of the
as-cast Mg—8%AIl—-1%Si alloy. Based on the above
analysis, the modification mechanism of Chinese script

shaped Mg,Si phases can be explained by using the
Gibbs-Thomson effect [24]. According to the Gibbs-
Thomson formula, the Si concentration in the matrix
corresponds to the site where the Mg,Si phase has larger
curvature, which can be expressed as [24]:

ca(r>=ca(w>exp[%] 0

kgTr

where c,(r) is the Si concentration at the position with a
curvature radius r; c¢,(o) is the Si concentration at flat
interface; Vg is the volume of Si atom; o is the surface
tension; kg is the coefficient related to the shape and T is
the temperature. Since the curvature radius of different
positions for a Chinese script shaped Mg,Si particle
might be different, a concentration gradient of Si could
be created between these positions. Therefore, during the
semisolid isothermal heat treatment, the Si atoms would
diffuse from the position where the curvature and Si
concentration are respectively large and high to the flat
interface where the Si concentration is lower, and then
the balance of local Si concentration between these
positions could be broken. Furthermore, in order to keep
the balance of Si concentration, these positions with
larger curvature could be dissolved. Oppositely, due to
the supersaturation of Si concentration, the Mg,Si phases
could form in the a-Mg matrix corresponding to the flat
interface. As a result, these positions with larger
curvature could break, and then the granule shaped
Mg,Si phase would from, where different positions have
close curvature radius. In spite of the above, the
modification mechanism of Chinese script shaped Mg,Si
phases during semisolid isothermal heat treatment is not
completely clear, and further investigation needs to be
carried out.
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4 Conclusions

1) It is possible to produce Mg—8%Al—-1%Si alloy

with  non-dendritic semisolid

1sothermal heat treatment.

microstructure by

2) With increasing holding temperature from 560 to
575 °C or holding time from 5 to 30 min, the liquid
volume fraction increases, the average size of a-Mg
grains grows and the globular tendency becomes more
obvious.

3) The morphology of Mg,Si phase transform from
Chinese  script shape to granule shape in
Mg—8%Al—-1%Si alloy during the semisolid isothermal
heat treatment.
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ERAAIE T Z S Mg—-8%Al-1%Si &%
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