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Abstract: An analytical approach for predicting the critical blank holding force (BHF) was presented. Using energy method, the
analysis provides the circumferential stress and the equivalent strain as functions of radius under the plane strain and the equivalent
strain is inversely proportional to the radius respectively. The maximum relative errors of the circumferential stress and the
equivalent strain are 22.3% and 35.9% respectively under the two conditions for some dimensions of sheet and die. In addition, the
relationship between BHF and wrinkle number was obtained under the assumption that wrinkle shape is expressed by power function.
The critical BHF under plane strain was analyzed for the wrinkle shapes when the power is less than, equal to or greater than 1. The

effects of wrinkle shapes on the critical BHF are also presented.
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1 Introduction

Wrinkling is an instability phenomenon that may
occur in sheet metal forming. The analysis of wrinkling
is the basis of the control of BHF.

Wrinkling instability is usually analyzed using
bifurcation theory. HILL’s bifurcation and uniqueness
theory initiated the general analytical study of plastic
wrinkling [1]. HUTCHINSON [2] developed the
bifurcation theory for structures in the plastic range.
Based on this work, HUTCHINSON and NEALE [3]
later studied the buckling behavior of doubly-curved
sheet metal. However, BHF is not considered in the
research. TRIANTAFYLLIDIS and NEEDLEMAN [4]
studied this problem and analyzed the effect of blank
holder stiffness on the critical buckling stress and wave
number. The energy method is another approach.
SENIOR [5] presented a one dimensional model and
gave a wrinkling criterion using energy method,
considering sheet thickness to be constant. Assumptions
are made to determine the curve of the critical BHF vs
punch stroke. YU and JOHNSON [6] used a
two-dimensional buckling model of an elastic-plastic

annular plate to determine the critical conditions and also
quantitatively investigated the effects of a blank holder
on the critical buckling stress and wave number. LIN et
al [7] derived models of critical fracture and critical
wrinkling respectively and discussed the formability of
aluminium alloy sheet in the case of variable BHF. GAO
et al [8] gave a formula of the critical BHF required to
avoid wrinkling in the flange region accounting for
friction. ZHAO [9] discussed the effect of friction
coefficient and anisotropy coefficients on the critical
BHF. WANG [10] investigated BHF through the
theoretical analysis and experiment. Based on the work
of WANG [10], LUO [11] conducted the analysis to
obtain the safe region of BHF which is between the
critical rupturing curve and the critical wrinkling curve.
YAGAMI et al [12] investigated the effect of blank
holder motion on deep drawability and showed that
wrinkle elimination can be successful if wrinkles are
within the allowable height range. WANG and CAO [13]
studied the critical wrinkling condition of a square cup
forming wunder the constant BHF assumption.
AGRAWAL et al [14] derived a formula of the critical
BHF required to avoid wrinkling of the flange in
axisymmetric deep drawing process, considering the
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influence of thickness. SIVASANKARAN et al [15] used
an artificial neural network model for predicting and
avoiding surface failures such as wrinkling of sheet
metals.

To simplify the calculation of strain energy, many
researchers have made the assumption that equivalent
strain is inversely proportional to radial coordinate by
using energy method. The strain energy refers to the
energy due to bending deformation and circumferential
stress when wrinkling happens. However, such
calculated critical BHF is not in consistence with
experiment. In order to calculate the BHF accurately, the
assumption of plane strain is utilized to analyze the stress
and strain. The critical condition for wrinkling is given
and the critical BHF is calculated. Since wrinkle shape
has a great influence on the critical BHF, the curves of
critical BHF vs punch stroke are calculated for different
assumed wrinkling models.

2 Analysis of strain and stress in flange

2.1 Plane strain assumption

According to the characteristics of the axisymmetric
deep drawing, the following assumptions are made.

1) Plane deformation in the flange, i.e., the strain, is
zero in the thickness direction. It can be expressed as
&~0.

2) The equivalent stress and equivalent strain satisfy
the relationship o=B¢&", where B and n are strength
coefficient and hardening exponent, respectively.

3) The frictions between blank holder and sheet, and
between die and sheet are neglected.

4) Bending and reverse bending are not considered.
namely, the sheet bending deformation on the corner of
the punch and the die is neglected.

Plane strain assumption has been used to analyze
the flange deformation in axisymmetric deep drawing.
Differential equilibrium equation can be expressed as

dp

do,=(cyp—0,)— (1
0

where o, and o, denote the normal stress in the

radial direction and the normal stress in the

circumferential direction respectively at r=p; do,
represents the radial stress increment when the radius
increases dp at the time ¢.

According to the plane strain assumption and the
definition of equivalent stress, the relationship between
0, and gy can be obtained as

2

where r is the anisotropy coefficient.

The equivalent strain can be derived as

DY
£= =2 (e /) 3)

where p is the initial location of the material particle at
the time 1=0; p is the location of same particle at the time
t.

Substituting Eq. (2) into Eq. (1) and considering the
strain hardening rule which is expressed by oc=Bs", we
can obtain Eq. (4):

n+l
2(r+1 »d
do-p:—B{ 1(:—;)} [In(p, / p)] f (4)

Let B, = B|yJ2(r +1)/(1+27) ]nﬂ . Substituting the boundary

condition into Eq. (4), we can obtain the radial stress o,,
which is equal to uQ/(nR hy) at p=Ry, where Q is the
BHF, hy is the initial thickness of the sheet, x is the
friction coefficient, and R, is the radius of material
particle at the outer edge of the flange at the time ¢. The
initial location of the material particle is Ry, i.e., the
radius of the sheet metal. The stress of material particle
at any position p, where p €[7y,R,, ], and r,, the inner
radius of the flange, which is the inner radius of the die
when the die edge radius is neglected. Then ¢, and oy in
the flange can be calculated respectively as

o, = j o Bl(lnx—o)" %+ KO ©)
R x x TR,k
JHZ—Bl(ln&)" +I o Bl(lnx—o)" g+_,uQ 6)
P p X x TR

where p,=+R* R +p> ; x is the variable of

integration, x €[p,R,]; Xo is the initial location when
the time =0; x is the location when the time is ¢. So x,

[p2 _p2 .2
can be expressed as x; =4/ Ry — Ry +x° .

2.2 Inversely proportional assumption

It is difficult to obtain the primitive function of the
integral function from Egs. (5) and (6). So in order to
simplify the calculations, some researchers assumed that
the equivalent strain is inversely proportional to the
radial coordinates. When =0, using the equilibrium
equations, the Tresca yield criterion and boundary
conditions, the stress in the flange can be obtained as
[7-11]

o oD RR, ! -
1+2r R, p
_ B a Ry | Ry n
Op =" In (_RW){(_/O) 1} (3
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Figure 1 shows the relationship between the ratio of
circumferential stress and intensity coefficient, o4/B, and
the ratio of radial coordinate and sheet initial radius, p/R.
Figure 2 demonstrates relation between the equivalent
strain, ¢, and the ratio of radial coordinate and sheet
initial radius, p/Ry, under the two different assumptions
when =1, R,/Ry=0.85, n=0.19, =50 mm, Ry=110 mm.
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Fig. 1 Ratio of circumferential stress and intensity coefficients
under two assumptions
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Fig. 2 Equivalent strain under two assumptions

Figures 1 and 2 show that the circumferential
stresses are different under the two different assumptions,
so are the equivalent strains. The maximum relative error
of the circumferential stress is 22.3%, and that of the
equivalent strain is greater, which is 35.9%. The
circumferential stress and the equivalent strain are
needed in order to calculate the BHF when the energy
method is used. Hence, the blank holder forces
calculated according to the circumferential stress and the
equivalent strain under two assumptions are different.

It should be noted that the assumption that the
equivalent strain is inversely proportional to the radius is

not in accordance with the constant volume condition.
Thus, the stress solution obtained in this way is not
accurate. It is also necessary to adopt the later
assumption in calculating the BHF, predicting the
wrinkling and comparing the results obtained by using
the two assumptions.

3 Calculation of strain energy

3.1 Basic equations

Let us consider a single wrinkle. According to the
well-known energy method, the energy U, due to the
compressive circumferential stress can be written as

Uy=U, +U,

where U, is strain energy due to circumferential
stretching of sheet after wrinkling; U, is strain energy
due to bending stress during wrinkling; Up is the work
done by the blank holder force.

For a micro-ring with inner radius p and outer
radius ptdp, its cross section area is hdp. There are a
number of wrinkles. For a single wrinkle of the
micro-ring, let / be the original circumferential length,
and S’ be the increment of circumferential length when
the wrinkling happens. Then the strain energy released
by the circumferential stress can be obtained.

R, ,
U, = —jro S'cytdp (10)

! !
where S'= I Ods - I de , ds and dx represent the micro
circumferential lengths of micro-ring of the single
wrinkle after wrinkling and before wrinkling respectively.
When the wrinkle magnitude is very small, S can be
expressed by

, ¢l 1 dy ! 1¢¢ dy
SR Nl o IO et

Deflection at any point of the single wrinkle is
generally assumed to be [7]

y=Yl3(P) S, (P)

where y, is wrinkle amplitude; ¢ is the angle of arbitrary
point in the single wrinkle; y is the deflection of the point
at any position (p, ¢) in the flange; f,(p) and f;(¢)
are the functions of p and ¢ respectively, which are
dimensionless and mutually independent.

Substituting x = pg into Eq. (11), we can get

b _pdp 1
dr oxde pog

w_ Y
a¢—yo dqﬁf,a(p)
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§'= fp< ) j"’°(f¢) dg (11)

where ¢ is the angle of the arc corresponding to the
single wrinkle. When p is an arbitrary value and ¢=0 or
¢=do, y=0; when p =R, and ¢=@/2, y=y,.

The bending energy that is required to make the
wrinkle formed for a single wrinkle can be calculated by

v (1D
A

where d/ is the moment of inertia of cross-sectional area
of the micro-ring. The inner radius of the ring is p. The
thickness and the width of the cross section are 4 and dp
respectively. And d/ can be expressed by

d2
dx_f)zdxdl (12)

1 3
dl =—¢£d

12 r
dzy_ 1 52)/_ 1 d2f¢

= = Yofp(P)
dr? pz 6¢2 pz d¢2 0/p
into Eq. (12), we have

2
s [df¢] LI 13
Yo

When the swift strain hardening rule is used, we
have

Substituting

D= do =nBe""!
de

where D is the plastic tangential modulus.
Let

1

fo(p)= (—_”Jz
w rO

1@ =+~ Loos( 2

2 2 %

Substituting the two equations into Eq. (10) and Eq.
(13) respectively, we obtain

2 2
T Yo
U, = Cot(1-10)d 14
0 4¢0R_roj oi(1=)dp (14)
1ty 5(p—1p)
. 0 [*pplPh) L Vdp (15)
12 ¢O R - N p3

In the following analysis, Uy and U,, are calculated
based on the two different assumptions.

3.2 Inversely proportional assumption
Under the condition that the equivalent strain is
inversely proportional to the radial coordinate,

substituting the circumferential stress calculated from
Eq. (9) into Eq. (14) and let

517[ h yO’/b n RO
¢ = — 7 In"(—
g@( 0) n R T (R )

The energy released by the circumferential stress
o, for a single wrinkle can be written as

1 1R, R

Uy = go(dh)(-—+——% —In =) (16)
nonr Ty

Because the equivalent strain is inversely

proportional to the radial coordinate, we have

n-1
_do e Ru | Roy 204D
D_dg_nB(p) {ln(Rw) 1+2r} 17)

Substituting Eq. (17) into Eq. (15), we can obtain
Ry R n— ( — K )R
Uy = gu ()] (1 2270 g
) p p
4,3 2
whete g, (@) =" 52 i [F0 |
1245 (R, —1)R, 1+2r

After the integration, we obtain

= G () () (18)
% +1 7 RW

Equations (16) and Eq. (18) are obtained under the
condition that the equivalent strain is inversely
proportional to the radial coordinate. This condition is
contradictory with that of constant volume which is the
basic assumption commonly used in the plastic forming.

3.3 Plane strain assumption

Under the condition of plane strain and constant
volume, U, and Uj are calculated.

In order to simplify and compare the results of the
two kinds of calculations, let x=0. Substituting Eq. (6)
into Eq. (14), we can get

R, 1 1 "
Ug=2gy(d )Ir (r— - ;) : {[ln(po P =
L)

R, /R, > > n
I IR, {ln[\/l—(Rw/Ro) +x /x]} /xdx)dp (19)
To

where g,(¢@,) is inversely proportional to ¢ and is
calculated by

B17T2h yg”o

8o(dy) = 44y R

w ~To

Equation (19) shows that U, is the function of R,
and contains many integral terms. Therefore, the
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numerical method is generally required to calculate the
results.

Using the definition of the equivalent strain and the
plane strain assumption, the plastic tangential modulus D
can be obtained as

n—1
[R2_R2 4 2
D=nB ‘/2(”1)-111 0 tw¥ P (20)
1+2r P

Substituting Eq. (20) into Eq. (15), we can obtain

n—1
VR -RE+p* | (p-n)R
0 P (; de

p p

U =gu(@)f " |In

@2y
where g.(¢) is inversely proportional to ¢3 and is
written by

2. (d) = nBr*h’ yé { 2(r+1) }n_l
w\?0/) —

124, (R, —rp)R,, |V 1+2r

4 Calculation of critical BHF

4.1 BHF under wrinkling condition

From the above analysis, we can get the relationship
between the BHF and other parameters by using the
energy method based on the latter assumption of the
wrinkling model. Let N be the number of the wrinkles, O
be the BHF, then N = 27/, . The work done by the BHF
for each wrinkle is obtained.

0 _ PoYo

U.=£, _%h
0= N T

o

According to the principle of energy conservation,
we can obtain
2n

$¥o

0=U,-U) (22)

When the friction is not considered in Eq. (22),
since Q is not included in Uy, it can be obtained
directly.

When friction is considered, the energy released by
the circumferential stress consists of two parts: U, and
U}, where U, is the value calculated by Eq. (19)
without considering the friction and U} is the energy
consumption caused by friction force. Substituting the
term that contains x in Eq. (6) into Eq. (10), we can
obtain

UL =-K,05, f—jt 23)

where K, is dimensionless coefficient and is calculated

R,
2u v Sdp .
YoRy @y * 70

by K, =

Substituting U, +U} into U, in Eq. (22), BHF
can be expressed as

L u,-u 2"

u 0Yo

0=

1+ K
or

27
0= dyo(1+K,)

R, n
ooy K| B R |
P

{g9<¢o)jfw )
]

o X X
RO

n—1
’RZ _R2 + 2 _
In 0 w TP } (p r(;)Rw dp

R,
dp-g, ()| [ > ;

(24)
When the assumption that equivalent strain is
inversely proportional to the radial coordinate is used,
substituting Eq. (16) and Eq. (18) into Eq. (22) and
considering friction, Eq. (24) becomes
0- 2n
Yo (1+K )

gw<¢o){1 A LB }} (25)

IR

nro

n
R
W w

0

{g9(¢0>(—1+
n

n 7 n+l I RW

When forming conditions, such as forming speed
and temperature, are not considered, Eq. (24) and Eq. (25)
give the relationship among the BHF and material
properties parameters, geometric parameters of the sheet
metal, punch stroke and wrinkle model parameters. The
BHF changes only with the wrinkling model parameters
when the forming conditions and other above parameters
remain unchanged.

4.2 Critical BHF

The BHF is the function of the wrinkling model
parameters when other parameters have been given. The
wrinkle amplitude is generally allowed to be set a certain
magnitude under the critical wrinkling condition, and
the BHF is only the function of the wrinkle number N or
the corresponding central angle of a single wrinkle, ¢.
The critical BHF can be obtained by substituting ¢ into
Eq. (24) and Eq. (25). The magnitude of ¢ under the
critical BHF condition can be obtained from Eq. (24) and
Eq. (25) by using 0Q/0¢, =0.

Figure 3 shows the relation of Q/y, vs the number of
wrinkles when R,/Ry=0.85 and p=0.1, where Q is the
critical BHF. When the number of wrinkles is a certain
value, the BHF reaches the maximum which is the
critical BHF.
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Fig. 3 O/y, vs number (N) of wrinkles (R,/R=0.85, 1=0.1)

In the actual drawing process, the critical BHF is
the function of the punch stroke in the case that other
parameters remain unchanged. The relationship between
QOlyy and R,/R, is shown in Fig. 4. R, denotes the
position of outer edge of the flange that changes with the
punch stroke. The calculated critical BHF under the
plane strain assumption is greater than that when the
equivalent strain is inversely proportional to the radial
coordinate. The critical blank holder forces are both zero
at the start and the end positions in the drawing process,
while the BHF reaches the maximum at a certain position
during the process.

250
Plane strain assumption
2001
E 150}
z
=
= 100f Inversely proportional
@ assumption
50F
0 L 1 " 1 L
045 055 065 075 0.85 095

Rw"’ Rl)
Fig. 4 Curves of critical BHF vs stroke (¢=0)

Generally, wrinkling can always be eliminated in
the deep drawing process when the applied BHF is not
less than the critical BHF.

5 Influence of wrinkle model on critical BHF

As stated in subsection 3.1, the wrinkle model in
flange is generally assumed as

Y=014@)1,(p)

Referring to the function f,(p) used in Eq. (13),
it can be revised as

. p—1
.fp(p)—{Rw —roJ
where m is a parameter greater than zero.

Figure 5 demonstrates the shapes of the wrinkle
curve along radial direction with different m. When value
of m changes, the shapes of the wrinkles are different,
while the largest height of the wrinkles is the same. The
BHF is mainly applied to the outer edge of the flange
where the thickness of the sheet is the greatest after
drawing process. The shapes of the wrinkles are convex
when m<1, while they are straight or concave when m=1
or m>1 respectively. Generally, the wrinkle shapes are in
accordance with experimental result when m<1. Thus the
value of m corresponding to the possible shapes of
wrinkles in the flange is not greater than 1.0.

1.2
+— m=0.3
=— m=0.5
1.0F a— m=1.0
y— m=2.0
| *— m=3.0
081 «— =20
£
,:i 0.6
0.4}
0.2

U 1 1 1
0.45 0.55 0.65 0.75 0.85 0.95

pf{RU

Fig. 5 Shapes of wrinkles along radial direction

Substituting f(#) =[1-cos2ng/¢)]/2 and f,(p)
for different m into Eq. (10) and Eq. (13), we can get

2.2
T Ry -7 om G,
g =20 [ (L= 2 (26)
4¢0 o Rw_rO P
4.2
T R, -7 omd
= J’g h3(’0 0 y2 _/3? 27)
12¢0 o Rw_”o P

The strain energy U, and U, can be obtained
by substituting Eq. (9) and Eq. (20) into Eq. (26) and
Eq. (27) respectively. The critical BHF can be obtained
by Eq. (22).

Figure 6 shows the critical BHF curves
corresponding to different m. The results show that the
shape of the wrinkle has a great effect on the calculated
results of the critical BHF. The greater the value of m is,
the smaller the critical BHF obtained is.

Under the experimental conditions, there is no
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uniform standard to determine the onset of wrinkling, so
it is difficult to accurately obtain the critical BHF.
Therefore, in many cases, the critical BHF is obtained by
analytical or calculation method. Many researchers
[7,9—11] selected m=0.5 to calculate the critical BHF
which is generally greater than the experimental results.
The wrinkling occurs in the outer edge of flange at first,
and then in the inner range. Thus, the value of m
corresponding to the shapes of wrinkles in the flange is
possibly not greater than 1. To take a smaller magnitude
of m is safe for calculating the critical BHF. The allowed
amplitude y, and the actual shape of the wrinkles should
be considered to calculate the critical BHF accurately.

250

2001

150

100+

(O/yo)/(kN-mm™)

0 L L 1 L
045 055 065 075 085 095 1.05

R\\’IIIRU
Fig. 6 Relationship between relative critical BHF and shapes of
wrinkles (plane strain and u=0)

In order to reduce the critical BHF in axisymmetric
deep drawing process, we can control the wrinkle shapes
corresponding to a larger m shown in Fig. 4, in which the
critical BHF may be smaller by using a new deep
drawing process with radial segmental blank holder,
which was proposed by QIN et al [16]. By using this
method, the effect of the blank holder can be enhanced.

6 Conclusions

1) The distributions of stress and strain in flange
region along the radial direction for axisymmetric deep
drawing were analyzed under the plane strain and the
condition that the equivalent strain is inversely
proportional to the radial coordinate respectively. The
maximum relative errors of the circumferential stress and
the equivalent strain are 22.3% and 35.9% respectively
under the two conditions for some dimensions of sheet
and die. The critical blank holding forces are also
different.

2) The relationship between BHF and wrinkle
number was obtained when wrinkling shape was
expressed in terms of power function. The critical BHF
under the plane strain was analyzed for the wrinkle

shapes when m<l, m=1 and m>1, respectively. The
critical BHF decreases as m increases.

3) The assumed wrinkling shapes have great
influences on the critical BHF. Therefore, radial
segmental blank holder technique can be utilized to
control the wrinkle shapes to improve the formability.
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