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Abstract: The movement and deformation processes of the overburden strata and ground surface, induced by underground mining,
are affected by mining method, spatial relationships, geotechnical conditions of the rock strata and time. The authors reviewed and
extended an existing classical prediction model of the dynamic subsidence, and proposed potential new research avenues offered by
Cellular Automata (CA) models. The Knothe’s influence function model and the significance of subcritical mining geometry were
analyzed. The prediction results were verified against the subsidence field survey data to assess their quality and acceptability.
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1 Introduction

The movements and deformations of the overburden
strata and ground surface, due to the underground mining,
are complex processes affected by the mining method
and geometry, spatial relationship between deformation
instance and mining panels, timing of the extraction
process, composition and geotechnical parameters of the
overburden and the dynamics of deformation processes
transferred to the ground surface. Up to date, the
following solutions focusing on the prediction of mining
induced subsidence has been analysed and proposed:
1) Time function models based on the Mitscherlich’s
“law of growth” adopted by KNOTHE [1] and applied
by JAROSZ et al [2], CHANG et al [3] and CUI et al [4];
2) Models utilising the rheological characteristics of
overburden strata to derive surface subsidence over
time applied by DJAMALUDDIN et al [5]; 3) Empirical
models based on the measurements of surface
deformations presented by YU et al [6], ZENG et al [7]
and DENG et al [8]; 4) Numerical simulation models
adopted by ADAMEK et al [9], FALON et al [10],
YANGetal [11]and LI et al [12].

The basic mechanism inducing subsidence is linked
to the advance of a working face, which modifies the size
of the extraction panel (void) and to the subsequent

transference of this instability throughout the overburden
to the surface. For illustration purposes, the model
initially proposed by KNOTHE [1] is reviewed in more
details in the following section of this paper. However,
the objective is not to reproduce in details the previously
proposed solutions, but rather to expand the model’s
applicability particularly to the subcritical extraction
cases. This exercise should also be instrumental in
establishing a state of the art platform for possible future
studies. The potential implementation of a Cellular
Automata (CA) model is also discussed later in this work.
The theoretical analysis suggests that the application of
the CA model should lead to the results that are coherent
with the classical influence function and the stochastic
models that are well established in the subsidence
prediction practice. Taking into account the advances in
the computational techniques and computational
capabilities of the current computer hardware, the
proposed CA approach could lead to the development of
new efficient subsidence calculation methods.

2 Knothe’s model of dynamic subsidence

The Mitscherlich’s law of the growth applied to the
case of dynamic subsidence involves consideration of the
subsidence rate dW(f)/dt, the final (asymptotic) value of
subsidence W/() and the current value of subsidence
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W(t) at the time ¢. The mathematical expression used by
Knothe [1] has the following form:

dw (1) _

S
= (- ()] (1)

where c is termed as the time coefficient, which defines
the impacts of geological and mining conditions on the
rate of deformation process. By introducing, originally
proposed by Knothe, the subsidence influence function
based on the Gaussian (normal) probability distribution:
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where Wi, 1s maximum subsidence, W—=gmcosa; g is
subsidence factor; m is extraction thickness; a is dip
angle of a coal seam; r is the radius of influence; S is
extraction area.

The following closed form solution can be
obtained for a panel with one mining face moving toward
the point (Fig. 1) where subsidence is to be defined [2]:

2
W(xy,x,,At) = Wf(xo,x,)—exp(u—+zx,)~
4 r
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where W/ (%0, x,) is the final subsidence at stop time #; v is
rate of advance of a mining face; u=—cr/v; c is time
coefficient; A¢ is time after a mining face stopped (for
advancing face, Ar=0).
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Fig. 1 Geometry of longwall panel with advancing face and
translated extraction contour

The above solution introduces three stages of the
subsidence development over time.

1) Subsidence development while the face is
advancing with constant speed v (Ar=0), which is
represented by the first two terms.

2) Subsidence development after the face has
stopped (A£>0) and until local maximum subsidence is
reached, which is represented by all three terms.

3) Final (asymptotic) subsidence, which is
represented by the first term only.

It can be seen in the Eq. (3) that after the mining
face is stopped, the remaining portion of the subsidence
can be defined as:

2
AW (x5 %,) = exp(o—t ) - W (3 + s X, + o) (4)
4 r 27 27

The above leads to the following solution for the
subsidence development phase after the face of the
mining panel stopped:

W (xg, %, A=W/ (x,,%,) -

2
exp(u—+th —cAt)-w/ (xo +£,x, +£) (5)
4n r 2n 2n

3 Impact of sub-critical panel’s dimensions

The extraction panels classified as critical or
super-critical, in the sense of surface subsidence, are
panels with horizontal dimensions, in any direction,
equal or greater than 2r (2 times radius of influence) or
1.2-1.4 of average mining depth. Such panels will
develop the subsidence troughs with at least one point
achieving the maximum possible subsidence for the
existing geotechnical conditions of overburden. The
value of maximum subsidence can be calculated using
the following simple empirical formulae:

W,

max = qm cosax (6)

where ¢ is an empirical subsidence factor, m represents
the seam thickness, and a represents the seam dip angle.

In case of the sub-critical panels, with one of the
dimensions less than 2r (this usually applies to the panel
width < 2r or panel width ranging in 1.2—1.4 of the
average mining depth), the developing subsidence does
not achieve the maximum possible subsidence for large
extraction areas. The smaller subsidence results not only
from a small area of extraction but also from different
behaviours of the overburden strata. To adjust these
sub-critical conditions, a variable subsidence factor g
can be introduced to the previously listed Eq. (6). The
relation between the sub-critical and critical subsidence
factors can be expressed as: gsqpkp, where p is a
proportionality function depending on the directional
ratio (kp) between the panel width (in the particular
direction) and the average mining depth (Hp), i.e.
kp=D/H,.

The issue of critical dimension should be applied to
both, the width and the length of an extraction panel. As
a result the subsidence factors can be calculated as
follows:
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1) For the panels characterised by less than critical
width (D<(1.2-1.4)H,), the initial panel advance will
also be subcritical (D,<(1.2—1.4)H,) and the subsidence
factor will be calculated as:

qs = q\/P(kD, )p(kp) (7)

where D represents the final dimension (s) of a panel, D,
represents dimension (S) at a specific time ¢ of panel
development, kp represents directional ratio.

When the panel advance reaches the critical stage
and after it, the subsidence factor will be calculated as
q5=qp(kp).

2) For the panels characterised by critical and
super-critical width (D>(1.2—1.4)H,), at the initial stage
of panel advance (advance less then critical), the
subsidence factor will be calculated as: g = gp(kp ) -

After the panel advance reaches the critical
dimensions: gs=¢q.

The analyses of the field case studies, from Huainan
mining area in China, suggest that a Boltzmann type
function [12] can represent well the variation of
subsidence proportionality factor p(kp) in relation to
horizontal dimensions of an extraction panel. The basic
form of a Boltzmann function is as follows:

Al _A2

p(k):A2+1+exp[(k—A3)/A4]

(®)

where k = kp or kD, , Ay, A, A3, A4 are empirical factors
defined from field data.

An example of a Boltzmann curve defined for the
Huainan mine area in China is presented in Fig. 2.
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Fig. 2 Boltzmann curve for Huainan mine area in China

For the mining areas, with insufficient field data to
define the exact form of a Boltzmann function, the
following can be applied:

plkp) =kkp )

,O(kD,):k3kD, (10)

where ki, k3 are factors determined according to the
geotechnical properties of overburden strata, viz.:

0.7, soft stratum
ki, k3 =40.8, medium stratum (11
0.9, hard stratum

4 Case study

The presented case study is based on the
deformation measurements collected above a coalmine
panel in the Huainan mining area, Anhui Province, China.
The panel geometry was characterised by a length of 620
m and a width of 162 m. The average mining depth was
500 m, which included 100 m of the competent rock
strata above the coal seam and 400 m of the loose
material above it. The extraction method used was the
longwall mechanical mining with caving.

The collected

determine the basic subsidence prediction parameters

subsidence data was used to

including: subsidence factor, edge effect, influence angle,
subsidence deviation angle from vertical, horizontal
movement proportionality factor, and time coefficient. It
has to be noted that the face advance was considered
constant, whereas the reality indicated that the advance
rates are usually variable. The constant rate was
calculated by dividing the total face advance distance by
the time required to extract the panel.

The plan view of longwall panel and the position of
monitoring (prediction) line on the surface are presented
in Fig. 3. The graphical comparison of the measured and
predicted subsidence at progressive stages of the panel
development can be seen in Fig. 4. The corresponding
absolute deviations between predicted and measured
subsidence are presented in Fig. 5.

The maximum subsidence deviation in relation to
the maximum subsidence is about 12%. This level of
deviation could suggest that the proposed subsidence
prediction method yields acceptable results, however, the
authors believe that much better prediction could be
achieved through further refinement of the proposed
prediction model. At this stage the model is not capable
to account for differences in overburden strata
composition. The distribution of deviations, presented in
Fig. 5, suggests that the proposed model’s quality is
poorer at the edges of extraction panel. The authors also
believe that this could be originated by the variation in
the rock composition of the overburden strata and it
should have more pronounced impacts on the
development of subsidence in the areas the above edges

of extraction panels.



LIAN Xu-gang, et al/Trans. Nonferrous Met. Soc. China 21(2011) s536—s542

s539

Fig. 3 Plan view of panel and prediction line (1—6 are position line of each mining phase)
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Fig. 4 Comparison between predicted and field subsidence curves
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Fig. 5 Absolute deviation between predicted and field subsidence

5 Cellular Automata (CA) models and its
potential for subsidence prediction

In Ref. [14] a new cellular automata model was
introduced for the specific purposes of modelling
gravitational flow. Some authors used CA to model
gravitational flow of granular medium (sand) [15—18].
Specific applications to mining the gravitational flow are
much less frequent. Attempts have been made to model
the gravitational flow phenomena with a view towards

mining applications [19—-22] by using CA.

The model presented by ALFARO and
SAAVEDRA [14] was originally developed to simulate
the behaviour of sand models of gravitational flow. A
closer look at the results presented in that paper reveals a
reasonable similarity between the subsidence theory
already discussed in this paper and the results obtainable
using a computational model based on CA. The authors
believed the computational model presented therein
could be used in the context of subsidence prediction and
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consequently the authors proposed to explore this
research avenue in the near future. One of the most
attractive features of the CA based model is its apparent
flexibility which could be used to extend the current state
of the art in the subsidence prediction to the next level by
making extensive use of never and more powerful
computational capabilities not existent in the past. In
order to better understand better what this novel model is
about a light introduction to Cellular Automata theory
[23] is provided:

A cellular automaton is an array of cells each
colored either black or white. At every step there is a
definite rule that determines the color of a given cell
from the color of that cell and its neighbors on the step
before.

The main characteristics of a cellular automaton are
as follows: 1) Its state, which is variable for each cell;
2) Its neighbourhood, the set of cells, which interacts
with the cell in question; 3) The set of rules or program:
gives the changes in state with respect the neighbours.

The CA proposed in Ref. [14] uses as cubed cell
pattern. For this CA cells can be used in two possible
states: full or empty. At the beginning all cells are full.
When a cell is extracted, the generated void must be
filled with material from another cell; the cells above the
current void are in privileged position to accomplish this
objective. Inspired by this idea a transition rule for the
evolution of the CA was proposed. A probability
distribution for the neighbours (the upper cells) is
assigned, and then a selection is performed according to
this distribution for the cell, which replaces the void. The
void now has been moved to the position of the
previously selected cell. This process is repeated until the
void reaches the surface (the last level of cells). For
illustration purposes an example of a neighbourhood in
two dimensions is presented.

After this first void reaches the surface, a new void
is generated by the extraction of a new cell from the
same position used before which represents draw-points
in block caving but can be extended to more general
settings. The ascending void generated by the extraction
of a cell was named by ALFARO and SAAVEDRA [14]
as a “bubble”.

CALDERON et al [24] presented an algorithm to
calibrate the transition probabilities. They based their
algorithm in the diameter of the opening at a certain
height. This approach was proven to be effective but in
practical terms depended on the information that was not

known as priori and was believed to be difficult to obtain.

The interesting fact is that an algorithm is available that
can be used to calibrate the transition probabilities and it
is envisioned that it could easily be adapted in the
context of subsidence applications where usually data is
available.

5.1 Bubbling process

The proposed cellular automata was analysed in a
two-dimensional case in Ref. [14]. The approach was
used to simplify the calculations; the extension to three
dimensions is reasonably straightforward. Given a block
model of certain dimensions, the probability of a given
bubble to reach the position of block (i, j) is given by:

i+l

PrinG, j)=1y= Y PrinG,j)=1/nG,j-1)=1}
k=i-1

PrinG,j-1)=1; (12)

where 7(i, j) is an indicator function defined as:
o 1, if pass through
)= {0, if not (13)

This calculation becomes trivial using Total
Probabilities Rule. The quantity Pr{(i, j)=1} is called
bubble probability. Considering pi, p,, ps as transition
probabilities for the neighbours (left, centre, right), then,
PrinG, j) =1 =pPrinG,j-) =1+

+p, Prin(i-1,j-D)=1}+
pyPrin(i+1,j-1) =1} (14)

To understand the kind of phenomenon this model
simulation is very important to characterize the final
cavity generated by the extraction of material. Empirical
tests provide cavities with parabolic form but formal
definitions are required to explain this behaviour. To
illustrate the importance of this point, a two-dimensional
case with transition probabilities given by p;=0.8,
p>=p3=0.1 was considered (Fig. 6). The blocks that
obtain a positive probability of being visited by a bubble
are those depicted in Fig. 7 (a). For the blocks that have
bubble probability greater than 0.001, the shape is
described by Fig. 7 (b). Finally cases in Figs. 7(c) and (d)
are for bubble probabilities greater than 0.05 and 0.07,
respectively.

ALFARO and SAAVEDRA [14] observed that the
differences between the shapes for different cut-off
bubble probabilities required a more formal approach.
They proposed the concept of the significance level that

P P Dy

Fig. 6 Block neighbourhood in two dimensional case [14]
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(b)

(d)

Fig. 7 Final cavities considering distinct bubble probabilities [14]: (a) Pr{n(i, j)=1}>0; (b) Pr{n(, j)=1}>0.001; (c) Pr{n(,

=11>0.05; (d) Prin(, j)=1}>0.07

will be shortly explained. Equation (13) gives a
probability distribution that in each level approximates a
Gaussian one, i.e., the central block (the one in the same
column as the draw point) has a greater probability of
being visited by a particular bubble, and this probability
decreases as it moves away from the central column.

The model can be seen as a random walk in one
dimension (in the two dimensional case) and a random
walk in two dimensions (in the three dimensional case).
The way to understand this fundamental fact is to see
that if all levels are put together into one level then the
system evolves in the same way a random walk process
would happen. Such kind of processes are described by
means of a partial differential equation (PDE) for the
probability density function of the position of the bubble,
p(x, f), in time ¢ when starting from initial position x:

2

o o o

—p(x,t)=v— p(x,t) + D— p(x,t¢ 15

atp(x) vaxp(x) e p(x,t) (15)
With solution:

p(xt) = — exp—(x"”)2 (16)
" JanDt 4Dt

The border
p(x,0)=d(x).

It can be seen that this solution manifests the clear
link between the CA model and the subsidence
phenomenon as presented by KNOTHE [1]. In fact, the
CA model by representing the extraction process
implicitly can model the surface subsidence as a
by-product. This unexpected connection opens a new
realm of the application of flexible,
computationally advantageous technology to this old
problem that could reinvigorate this research area.

condition for Equation (16) is

new,

6 Conclusions

1) The application of the proposed dynamic
subsidence prediction model, that is extended from the
model originally proposed by KNOTHE [1] and
considers the sub-critical provides further
improvement with subsidence prediction accuracy. The
model rendered results characterised by a maximum
deviation of 12%. However, the authors believe that the
model can be further improved by considering the rock
strata composition. Such consideration should correct the
larger deviations observed at the edges of the extraction

cases,
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panel.

2) It can be seen that the theoretical solution
obtainable using the reviewed CA model shares a
common form with model based on the Gauss influence
function (adopted by KNOTHE). This encourages future
research, as it will allow for the introduction of fine
granularity in the study of subsidence phenomenon. It is
expected that the models based on CA will allow for
more flexibility and be able to take into account the
geological and geotechnical conditions of the overburden
strata.

3) The cellular automaton reviewed in this paper is
based on the probabilistic evolution rules. Two different
computational runs of the CA based simulations will
provide two different results. Several runs will provide a
set of scenarios that can be used to estimate and
characterise the precision associated with subsidence
prediction. Such information could be used to take
decisions that incorporate risk measurements, thus
providing a new set of tools to assess extraction plans in
terms of subsidence to mention just one example.
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