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Abstract: Technologies of underground mobile positioning were proposed based on LiDAR data and coded sequence pattern
landmarks for mine shafts and tunnels environment to meet the needs of fast and accurate positioning and navigation of equipments
in the mine underground without satellite navigation signals. A coded sequence pattern was employed for automatic matching of 3D
scans. The methods of SIFT feature, Otsu segmentation and fast hough transformation were described for the identification,
positioning and interpretation of the coded sequence patterns, respectively. The POSIT model was presented for speeding up
computation of the translation and rotation parameters of LIDAR point data, so as to achieve automatic 3D mapping of mine shafts
and tunnels. The moving positioning experiment was applied to evaluating the accuracy of proposed pose estimation method from
LiDAR scans and coded sequence pattern landmarks acquired in an indoor environment. The performance was evaluated using
ground truth data of the indoor setting so as to measure derivations with six degrees of freedom.
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1 Introduction

The development of global navigation satellite
system (GNSS) has brought great convenience to the
work and life of mankind. However, there are still a lot
of problems to be resolved for fast and accurate
positioning in mine shafts and tunnels environment
without GNSS signals. Unmanned mining technique,
also named as manless working face, is the only way to
solve the safety problem of mine industry. While the core
technology of underground unmanned mining is the

high-speed,  high-precision  self-positioning,  self-
orientation, pose estimation and navigation of
underground mining, digging, and transportation
equipments.

Currently, the underground positioning technologies
include [1]: radio frequency identification (RFID) [2],
ZigBee technology [3], infrared technology [4],
Bluetooth [5], WiFi and other wireless positioning
technology. The pose parameters of moving targets can

be estimated by the means of wireless signal receivers
fixed on targets and the wireless base station installed in
the tunnels. Nowadays, the moving targets can be located
in the range of about 5 m. However, its accuracy is
unable to meet the needs of unmanned mining and smart
mining.

Active positioning technologies, including laser
range finders, light detection and ranging (LiDAR),
visible light image sensors, can be used for perceiving
the surrounding environment. The active positioning
technologies are characterized with ease of hardware
integration and software operating without depending on
wireless base station signal. The data from active
positioning system can be used to correct accumulated
errors of IMU module.

3D point cloud information can be scanned by the
LiDAR sensors installed on a mobile platform. The
features of LIDAR point cloud data include large
volumes of data, irregular distribution of points, lack of
texture information and so on. The LiDAR sensor can
only get a certain part of the spatial information of the
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scene in each scan due to object occlusion, narrow
underground tunnels and other restrictions during the
mobile laser scanning.

All the 3D point cloud data from different
perspectives in the tunnel should be transformed to a
common coordinate system, also known as the global
reference coordinate system, to achieve a continuous
positioning of moving targets. Matching 3D scans is one
of the most critical works in the process of the mobile
positioning, and it will directly affect the final accuracy
of positioning.

Currently, the problem of automatic registration of
point cloud data has not yet been fully resolved. The
common ICP registration algorithm needs two point data
with the close initial position and orientation, and quite
large overlap regions. The ICP iterative registration
operation is time-consuming so as to fail to meet the
needs of real-time positioning fast moving targets.

Simultaneous localization and map building (SLAM)
is a technique used by robots and autonomous vehicles to
build up a map within an unknown environment (without
a prior knowledge) or to update a map within a known
environment (with a priori knowledge from a given map),
at the same time to keep track of their current location.
For example, MonoSLAM [6] is a vision-based
simultaneous  localization and mapping system.
MonoSLAM system integrates a single camera to detect
and track a sparse number of landmark features, and also
plots its position within a 3D map. It is an interesting
way of doing things because it involves forming a closed
loop between the mapping and the feature detection.
Individual features are detected and inserted into the map,
but then the map is used for very specifically searching
and re-acquiring previously observed features.

6DSLAM [7] system registers 3D point clouds into
a common coordinate system. For the registration,
different iterative closest point (ICP) [8] minimizing
algorithms can be chosen, as well as global relaxation
methods, aiming at generating an overall globally
consistent scene so as to locate the moving target in such
3D map.

The shafts and tunnels in underground mine are
harsh with humid air and ambient light. Therefore
MonoSLAM, which is totally based on imaging
technology, is not suitable for such environment. In the
case of 6DSLAM system, ICP algorithm is used for
registering 3D scanning point clouds. Although
k-dimensional tree data structure is employed for
optimizing the data search, it still takes several seconds
for achieving the overall registration of 3D point cloud
so as to unable to meet the needs of real-time
positioning.

According to the features of mine underground
shafts and tunnels environment, a coded sequence pattern

landmark is proposed for automatic matching of LIDAR
point data. The methods including SIFT [9] features,
Otsu segmentation and fast hough transformation is
described for identification, positioning and interpret of
the coded sequence patterns, respectively. The POSIT
model is presented for computing the translation and
rotation parameters of 3D scans to achieve matching of
LiDAR point data and automatic 3D mapping of mine
underground shafts and tunnels.

2 Algorithm overview

As shown in Fig. 1, the preparatory work includes
establishment of the coded sequence pattern landmarks
network along the underground tunnels. The 3D center
coordinates of coded sequence pattern landmarks are
acquired during the installation process to set up
landmarks’ database.

/
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Fig. 1 Schematic of LiDAR and coded sequence pattern-based
pose estimation

The flow chart of mobile localization algorithm is
shown in Fig. 2. The steps of positioning algorithm are
as follows.

1) Data acquisition: The camera captured images
which contain coded sequence pattern landmarks and
LiDAR obtained 3D point cloud information of the
tunnel environment during the target moved along the
tunnels.

2) Image processing: The coded sequence pattern
landmarks were rapidly identified from camera images
based on SIFT [10] features. Then the 3D center
coordinates of the landmarks were acquired by decoding
from database.

3) POSIT: The pose from orthography and scaling
with iterations (POSIT) model [11] was employed for
iterative calculation of the position and orientation
parameters of the 3D scans if the number of noncoplanar
coded pattern landmarks obtained by cameras is not less
than four.

4) Registration: The registration of 3D point cloud
can be achieved according to the pose parameters to



s572 WANG Zhi, et al/Trans. Nonferrous Met. Soc. China 21(2011) s570-s576

! !
/ Capture images / / Laser scanning /

IMU data |

!

—’| Identify landmarks | |

| Binarization | | Point cloud data |
: P

| Edge detection | _— Pols’eO eSSIt"lfmritc;gglby
!

| Edge tracing |

Pose error<
threshold

Using FHT to
locate landmarks

|Point cloud registration|

l

Idengi?&;gg and |3D mapping of tunnels|
Acquire 3D Pose estimation |
coordings I

End

Fig. 2 Flow chart of LiDAR and coded sequence pattern-based
pose estimation

calculate the position and orientation of moving targets
and build the 3D map of mine tunnels.

3 Coded sequence pattern landmarks

Figure 3 demonstrates the proposed coded sequence
pattern following the rules of Schneider [12—13]. The
coding structure is a 3-layer concentric region and the
center circle is divided into four parts (3/4 black, 1/4
white). Center circle area is used not only to
automatically identify the region as a coded pattern and
determine its location, but also to show the baseline
where coding starts by means of a black-white boundary.
Proposed coded sequence pattern has the following
characteristics: 1) uniqueness: one coded pattern has only
one corresponding code; 2) invariance to rotation and
scaling; 3) easy to identify from complex background; 4)
distinction between each other; 5) sufficient types. The
code sequence pattern landmarks have 2'* types. There
are still 4017 types left after removing the code which is
not clear to identify. Therefore, the landmarks meet the
needs of identification in the large-scale, long-range
tunnel environment [14].

Scale invariance feature transform (SIFT) algorithm
was employed for coarse positioning of landmarks
during the mobile localization. Then the fast hough

© (d)
Fig. 3 Proposed coded pattern: (a) Sketch of proposed coded
pattern landmark; (b) Index of coding regions; (c) Boundary

tracking of coded pattern; (d) Sampling of coded pattern

transform [15] was used for identifying and acquiring the
code information from landmarks quickly and accurately
to achieve precise positioning. The follows are concrete
steps.

1) Identification of landmarks

Firstly, extract the SIFT features from the center
circle area of standard coded sequence pattern landmarks.
Then match the SIFT features from standard coded
pattern with the landmarks in the tunnel scene images so
as to achieve the coarse position.

2) Segmentation and boundary tracking

After completion of coarse position, we can get the
number of landmarks in images. Otsu algorithm is
employed for calculating the segmentation threshold in
order to achieve boundary tracking.

3) Finding centers of landmarks

Take it into account that the coded pattern center
circle is just 3/4 circle. The fast hough transform is
employed for identifying the center point O(C,, C,) and
the radius R of circle. As shown in Fig. 3, a pixel
sampling method is implemented from baseline along
360° counterclockwise in order to read out the code
information.

4 Registration of 3D scan data

The POSIT model was employed for finding the
pose of the landmarks from images. It was assumed that
not less than four noncoplanar feature points (center
points of the landmarks) can be detected and matched in
the images. Figure 4 shows the classic pinhole camera
model.
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Fig. 4 Perspective projection and SOP

1) Center of projection O,

2) Image plane G at a distance f (the focal length)
from O,

3) Axes O, and O, pointing to the rows and columns
of the camera sensor, respectively;

4) Third axis O, pointing to the optical axis.

Steps of POSIT algorithm [16] include:

1) Initialization: Write the matrix 4: Kx3; each row
vector is a vector PyP;, compute the 3xK object matrix B
as the pseudoinverse matrix of A4;

2) wyo=1, k=1, 2, -, K, n=1;

3) Beginning of loop:

Compute Ry, R,, T,:

(1) Compute the image vector x’ with K coordinates
in the form (wpr;—xo) and the image vector y' with K
coordinates in the form (Wy—yo);

(2) Multiply the 3xK object matrix B and the image
vectors (K coordinates) to obtain vectors sR; and sR,
with 3 coordinates: sR;=B*x’ and sR,=BXxy",

(3) Compute the scale s of the projection as the
average between the norms of sR; and sRy: s=(|sR,|
IsR>)""%: Ri=(sR,)/s; Ry=(sR:)/s.

4) Compute new wy:

(1) Compute unit R; as the cross-product of R, and
Ry: Ry=R;*Ry;

(2) Compute the T.: T.=fls, where f is the camera
focal length;

(3) Compute Wy =R3 PP/ T+1.

5) If Wiy~ Wi(n—1)|> Threshold, n=n+1, go to 3);

6) Else output pose using values found at last
iteration: the full translation vector OP, is OPy=0Py/s;
the rotation matrix is the matrix with row vectors R;, R,
and Rj; for applications where the rotation matrix must
be perfectly orthonormal, renormalize this matrix:
compute R;'=R3/|R3|, R,=R;'XR;, and output the matrix
with row vectors R, P,’, and R5'.

The LiDAR and cameras make up the strapdown
mobile positioning system and the landmarks are rigid
fixed on the tunnels. Therefore, the landmarks and point
cloud data have same pose parameters in each scan. Thus
the proposed method can estimate the pose of point cloud
data by means of calculating the translation and rotation
parameters of landmarks. By doing this, the proposed
method builds the 3D maps of the mine tunnels to
achieve positioning the moving targets in real-time.

5 Experiment and result analysis

5.1 Experiment

Figure 5 shows the integrated experiment system
with LiDAR and image sensors. Firstly, arrange the
coded sequence pattern landmarks in the indoor
environment, and in the same time measure the world
coordinates of the landmarks’ centers simultaneously, so
as to establish the landmark database. Experiment system
moved along the lab environment, LIDAR was scanning
in the range of eighty meters and camera acquired 25
images per second containing landmarks. Onboard
computer calculated the translation and rotation
parameters in real time.

Fig. 5 Strapdown system integrated LiDAR and cameras

LiDAR data and images were captured in the
viewpoints approximately every 5 m in the experiment.
Table 1 contains the coded sequence pattern information
from the landmarks obtained in the experiment,
including the identification and decoding time, the image
coordinates (x, y) of the landmarks, coding information
(such as 100010010101) from landmarks, and the 3D
coordinates (x, y, z) of landmarks acquired from
landmark database. All the landmarks can be correctly
decoded in the experiment.

The pose parameters of 3D scans in the viewpoints
can be computed by taking the 2D image coordinates and
corresponding 3D world coordinates of the landmarks
centers into the POSIT model. POSIT model requires the
matches of 2D image coordinates and corresponding 3D
world coordinates. Mismatch will lead to erroneous
results. This study employed coded pattern technology to
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fast access the coordinates and avoid false matches.

Five groups of LIDAR data are selected to fully test
the robustness of proposed approach in the experiment.
Table 2 shows the overlaps between P1 and other
viewpoints (P2—P5), and overlaps between adjacent
viewpoints.

We use independently acquired 3D scans from Riegl
420i terrestrial LiDAR (accuracy: + 4 mm) in
combination with a 2D ground plan map as genuine truth
so as to measure derivations with six degrees of freedom
(w, ¢, k, X, Y, Z). Table 3 shows the translation and
rotation parameters from the time-consuming ICP
algorithm which is taken as reference values. Table 4
shows the errors between the pose parameters from
proposed algorithm and reference values.

The proposed algorithm achieves the registration

Table 1 Recognition of coded sequence pattern landmarks
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from viewpoint P1 to PS5, and also accomplishes the
registration between adjacent viewpoints by accurately
calculate transformation parameters.

The accuracy of translation parameters calculated
by proposed method is better than +4 cm, and error of
rotation parameter is smaller than 0.2°. It takes less than
60 ms to accomplish positioning:

1) Identifying and decoding the landmarks <15 ms;

2) POSIT iteration computation <15 ms;

3) Registration and mobile positioning <30 ms.

Figure 6 shows the route map by connecting the
viewpoints estimated by proposed algorithm. The
distance from viewpoint P; to Ps is more than 20 m in
the experiment. Thus the proposed algorithm can meet
the needs of mobile positioning and navigation of
moving targets in mine shafts and tunnels.

3D coordinate

Run time/ms X (pixel) Y (pixel) Binary code
x/cm ylem z/cm
11 133.0 710.0 100010010101 -363.8 —61.8 59.1
9 933.0 672.0 001101110011 -331.7 -33.1 18.2
8 557.0 467.0 010110001110 —267.1 79.0 92.9
12 924.0 476.0 110011010001 —265.6 25.5 24.1
11 567.0 275.0 101011110101 —227.0 96.4 35.7
Table 2 Overlaps between 3D scans
3D scans Overlap/% 3D scans Overlap/% 3D scans Overlap/% 3D scans Overlap/%
1-2 83.1 1-4 68.8 2-3 82.6 4-5 80.3
1-3 77.7 1-5 63.0 3-4 81.3 — —
Table 3 Pose reference of moving target from iterative ICP
3D scans o/(°) a@(°) x/(°) X/m Y/m Z/m
1-2 —1.088 —0.112 51.731 -5.50 0.96 0.02
1-3 0.551 0.419 57.447 —10.69 1.87 0.08
1-4 1.984 0.481 119.261 -16.77 2.53 0.14
1-5 —0.692 0.678 —118.535 —21.05 4.24 0.16
2-3 1.432 —0.958 5.733 -2.50 4.64 0.08
3-4 0.824 -1.174 61.834 -2.72 5.47 0.01
4-5 1.482 2.238 122.148 3.58 2.90 —0.08
Table 4 Errors of pose parameters between proposed method and reference values
3D scans Aw/(°) Ag(°) Ax/(°) AX/m AY/m AZ/m
1-2 —0.031 —0.001 0.022 —0.001 —-0.017 0.010
1-3 0.051 —0.082 —0.078 0.018 0.021 0.038
1-4 0.037 0.079 0.021 —0.033 —0.011 —0.025
1-5 —0.028 —0.104 0.115 —0.036 0.031 0.037
3-4 —0.031 0.018 —0.013 0.017 —0.018 0.007
4-5 0.042 —0.020 —0.016 —0.033 0.032 0.012
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Fig. 6 Map of moving target’s poses

5.2 Result analysis

By comparing the LiDAR and coded sequence
pattern based mobile positioning method to the image-
based MonoSLAM and LiDAR-based 6DSLAM method,
proposed algorithm has the following advantages.

1) MonoSLAM algorithm localizes the targets by
tracking the features from camera images. The unknown
contours and complex textures may lead to failure or
large positioning errors. While proposed method takes
the coded sequence pattern landmarks as key points,
avoiding recognition of the unknown features. It shows
excellent performance in maintainability and immunity
to interference in the experiment.

2) MonoSLAM algorithm takes an average of more
than 20 image features for localization. So, it needs a
quite large feature databases and complex computational.
Proposed algorithm only needs four noncoplanar coded
patterns to achieve point cloud data registration. Thus, it
also has the advantages of small feature database, high
speed and is easy to implement real-time positioning.

3) 6DSLAM uses the iterative ICP algorithm to
register the point cloud data which takes about 5 s. While
proposed algorithm employs POSIT model to calculate
the pose parameters of point cloud data so as to achieve
real-time positioning.

6 Conclusions and outlook

One active research area in underground mobile
positioning is mapping environments by matching point
clouds collected by LiDAR scanners. This study has
presented a novel solution and key techniques for 3D
scan matching based on initial pose parameters
estimation from coded sequence pattern landmarks and
POSIT model. Proposed method is to build a graph of

poses by iterating scan matching.

In addition, this study has applied an experiment for
evaluating the accuracy of pose estimation from 3D
scans and coded sequence pattern acquired in an indoor
setting. We use independently acquired 3D scans in
combination with a 2D reference map as genuine truth.
This enabled us to measure derivations with 6 degrees of
freedom.

Much work remains to be done because some
limitations of the system remain: Using LiDAR and
coded sequence pattern for positioning, in areas without
landmarks and lacking features, we plan to complement
our system with inertial navigation system (INS).
However, this switch might not be straightforward.

Future work will include three aspects. First, we
will integrate LIDAR and image sensors for positioning
the moving robot in the real mine shaft tunnel network
environment. Second, for the problem of insufficient
light in underground mine environment, further research
will focus on the self-luminous coded sequence pattern
technology to ensure recognition of landmarks. To this
end, we plan to adapt concepts from probabilistic
robotics, like explicit representations of uncertainties.
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