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Abstract: The fast high-efficiency inspection for mining subsidence of mine area is a reliable way for forecasting accident and
evaluating losing expense. In order to monitor mining subsidence of exploitation mine efficiently, LIDAR data were used and a novel
strip division method was brought forward based on separating-treatment theory, which divided the mass of discrete three-
dimensional point cloud data into a series of parallel strips and reduced the dimension in each strip. Polynomial fitting algorithm
based on the adaptive weights, which located in the range of the strip, was used for classification complex terrain data of mine-area.
The results show that LIDAR datamation can be greatly reduced. In the mean time, the time spending for calculation is shortened,
and computational complexity is simplified. Therefore, high-efficiency terrain classification of LiDAR point cloud method can be

great beneficial to monitoring environment of mine area.
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1 Introduction

Development and utilization of mineral resources in
large-scale bring social and economic benefits to human,
but also cause a range of environmental issues and mine
accident. The ground subsidence disasters caused by
mining exploitation directly destroy the natural state of
the land surface and lead to surface cracks, contamination
of groundwater and increase of desertification. Because
of the horizontal distortion and uneven subsidence, the
industrial and civil construction, in addition to water
conservancy facilities, transportation facilities in
subsidence area emerge to deform such as cracks and
distortion, directly threaten to people’s safety [1].
Efficient, rapid and accurate monitoring of subsidence is
able to predict ground subsidence hazards, provide a
reliable data for damage assessment, give reasonable
control measures and reduce the losses [2].

With the development of spatial earth observation
technologies, the traditional measurement method has
gradually been replaced by GPS monitoring methods
which solve the dynamic change monitoring of surface at

a point [3]. Although high accuracy can be achieved by
employing of GPS, but it still faces some key problems:
1) GPS is not accuracy in spatial resolution; 2) It costs a
lot of manpower and resources for setting and
maintaining monitoring points in large scale; 3) The
stability of the reference point is low. The use of
D-InSAR (Differential SAR interferometry, D-InSAR)
measurements has the millimeter-level accuracy and is
suitable for expressing the trends during long operating
time. However, in the active phase of surface subsidence,
D-InSAR interferogram will show a series of strong
interference fringes, causing a phenomenon of
interferometric phase aliasing which makes subsidence
measurement ineffective [4].

Airborne LiDAR(Light detection and ranging)
technology which has the decimeter-level measurement
accuracy is suitable for mine surveying and mapping in
large areas. LIDAR has a high resolution (point density
can up to 10 point/m?), high efficiency (airborne
platform can cover 100 km?h), and is less affected by
environmental conditions (terrain, weather conditions,
etc.) [5]. Airborne LiDAR is able to detect the surface
features and get the high-resolution three-dimensional
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cloud point data directly. One area of 1 km x 1 km
LiDAR data may have more than one million laser points
[6]. However, how to classify this massive LIDAR data
quickly has become a serious problem. Efficient and
accurate terrain classification of airborne LiDAR data
becomes a pre-conditions and key technology for the
mining subsidence monitoring in wide range.

2 Related work

In the literatures, some approaches for classification
from laser scanner data have been reported: 1)
Hierarchical robust interpolation method [7—8], which
classifies footprints by setting elevation threshold.
However, after interpolation by linear least square, the
elevation fitting residual of footprints does not follow
with normal distribution, so the method requires many
iterations to achieve reasonable parameters in advance
[9]. 2) Progressive TIN encryption method [10]. This
sparse TIN from the
neighborhood algorithm and puts the points meeting the

obtains an initial smallest
threshold conditions in the triangulated network, then
reconstructs the triangulated irregular network and
recalculates the threshold condition, at last filters the
remaining points. This method needs to construct
complex data structures, so its computational efficiency
is low. 3) Improved gradient filter [11—13]. Through
calculation the gradient between two terrain points is
selected when the height difference exceeded the
threshold. Each points should be compared with all other
points in this approach, so it costs a large scale of
calculation.

In this work, according to the features of mining
area a novel strip division method was brought forward
based on the separating-treatment theory, which divides
the mass of discrete three-dimensional points cloud data
into a series of parallel strips and reduces the dimension
in every strip. Within the strip, polynomial fitting
algorithm based on adaptive weights is used for
classification complex terrain data of mine-area. The
method can greatly reduce the time of calculation and
simplify the computational complexity. In the mean time,
the time spending for calculation, is shortened and
computational complexity is simplified as well.

3 Terrain classification method based on
adaptive weights

The flow chart of our method is shown in Fig. 1.
There are three steps in this algorithm: 1) strip division
for huge points cloud data; 2) curve fitting with adaptive
weights; 3) automatic classification of laser footprint.
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Fig. 1 Flow chart of terrain classification based on adaptive
weights for LIDAR data in mining area

3.1 Huge points cloud strip division

As shown in Fig. 2, the whole LiDAR data are
divided into many independent strips according to
coordinate. There is appropriate number of points in each
strip, and the coordinate change in the X-coordinate is
slight but obvious in the Y-coordinate. The terrain
features are represented by the Z-coordinate.

Several advantages of this partition processing are
listed as follows.

1) The LiDAR cloud point data of mining area are
very huge. Therefore, computer cannot deal with it in
once time because of the hardware limitation. So
separating-treatment must be used, and then all the
results are integrated to setup LiDAR data model of
mining area.

2) All cloud points are divided into parallel strips in
X- and Y-direction at a small distance. The heights of the
points of one strip are considered to depend only on the
X-coordinate or the Y-coordinate, respectively. This
method reduces the three-dimensional data processing to
two-dimensional polynomial curve fitting.

In order to decrease the error caused by strip
division, we divided data twice, first in X-coordinate and
second in Y-coordinate. For example, a X-coordinate
division has strip width which is supposed to be d, so the
number N of strips can be calculated.

N:ymax_ymin (1)
d

The range of y value of i strip is from yp,+(i—1)xd
to yminTi*d, a point is classified into i strips if its y value
is in this field.
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Fig. 2 Divided laser points cloud (a) into Y-coordinate strips (b) and X-coordinate strips (c)

3.2 Adaptive weights based curve fitting

The elevation of laser point Z is determined by the
X-coordinate and Y-coordinate of itself, so function ¢ is
defined as

Z=¢x, y) (2)

After dividing the point clouds through strips, the
value of Z is determined only by the coordinates in the
strip direction. If a strip is in X-coordinate, the
Z-coordinate of the strip are considered a function of the
variable X-coordinate. Similarly, the function of variable
y can be expressed as

€)

{(p(x), when considering x-coordinate

(), when considering y-coordinate

Then the residuals of every point are calculated
through curve fitting. In order to improve the data
accuracy, it usually takes several iterations. Algebraic
polynomial with the weights was used in the curve fitting
[14]:

@ (x)=w(x) (¢, +cx+c x4t x"H) @)
m 1 2 3 m

where m represents the number of polynomials plus 1;
w(x) is the weight function which is used to adjust the
point contribution to the curve fitting. The contribution is
depended on the residual adaptively. The bigger the
contribution is, the further the distance to the curve is, so
the contribution to the curve fitting should be reduced in
the next recursive computation by decreasing the weights
of this point. For those points with small residuals, the

weight should be maintained. After several iterations, the
curve will be able to match a majority of points
adaptively, and will not be influenced by individual
coarse points.

Suppose that there are n footprints in one strip,
using m—1 polynomial to calculate curve fitting.
Substitute the coordinate of points into the curve fitting
polynomial, and then an over-determined equation is
achieved as

w(x))- (¢ + 6 +c3x12 +"'+me1mA) =7z

w(xy) (¢ + %, +c3x§ +"'+megH) =1z
w(x;3) (¢ +cyx3 +c3x32 +~-+cmx§”71) =z, (%)

w(x,):(c; + ¢, +c3x5 +~-+cmx,',”71

)= 2,

This over-determined equations had the least
squares solution which was the solution to the equation:
A'Ac=A"7. So the polynomial coefficients can be
calculated.

c=(A"4)"'4A"z (6)

where the polynomial coefficient A is

1 x, x X!
2 m—1
I x, x5 - x5
A=P. = 2 m—1 |.
W= X3 X3 o X3
2 m—1
1 x, x, - x,




LI Hui-ying, et al/Trans. Nonferrous Met. Soc. China 21(2011) s648—s653 s651

w(x) w(xy) w(xy) w(x,)
w(x) w(xy) w(xy) w(x,)
wlx) wxy) wix3) w(x,) (7
wlx) wxy) wix3) w(x,)

The observations matrix of z is z=[z; 2z, z3 **
z,]". Put the matrix 4 and z in the formula 6 to get the
polynomial coefficients matrix c.

After the polynomial coefficients are determined,
every point of the strip is substituted into the polynomial
and the calculated value zgc, Of Zopsery 1S gotten, then
residual p of every point can be gained.

P~ Zobserv Zcalcu (8)

Weight function w(x) plays a very important role in
the calculation of polynomial coefficients; well-designed
adaptive weight function not only makes the curve fitting
more accurately, but also reduces the time of iterations.
The weight function used in this work is as follows:

1’ Z observ < Z caleu
1
W(x) =11 +[a(zobserv ~ Zcaleu )b] , (9)

Z caleu < Zobserv < Z caleu o

0,z +w<z

calcu observ

Figure 3 shows the weight function.

w(x)

L Zcaleu
Zobsery @

Fig. 3 Weight function

We use polynomials of orders 15—20. In the first
calculation the weights of all points are the same. When
the polynomial is determined, new weights for the points
are set. The weights of points beneath the polynomial
function stay 1. The weights of the points above the
polynomial function decrease with increasing height
difference. The new weights generate a new polynomial.
The calculation of the polynomial and the new weights is
repeated until the change of the polynomial is below a
given threshold. As shown in Fig.4, usually after five
iterations, the relative error will be smaller than the
threshold and curve fitting will be finished.

3.3 Automatic classification of laser points
Afterwards, the height of the points is compared

After one iteration

After five iterations

Fig. 4 Iteration result of polynomial fitting and adjusted
polynomial after one iteration and five iterations

with the polynomial. Only points above a certain
threshold, the polynomials are classified as off-terrain.
As there are polynomials in x- and y-direction, each point
is classified twice. Only the points, which are classified
as off-terrain twice, are considered to be off-terrain.
Points that are classified different in x- and y-direction
can be found at steep slopes [15].

4 Result

The curve fitting is not accurate if the strip width is
too broad, thus affects the final classification accuracy,
also leads to mismatch between adjacent strips. On the
contrary, the too narrow strips will greatly increase the
number of strips and computation of curve matching.
The experiment shows that the accuracy of the results
will not be improved by narrowing strip division. The
characteristics of mine area data were analyzed and the
strip width was set to be 3 m. Table 1 shows the
parameters of LiDAR data used in the experiments and
Table 2 shows the classification result.

Figure 5 shows the classification result of mining
area.

Table 1 LIDAR data
Parameter Value
Range of X-coordinate 496 400.060 000—497 850.310 000
Range of Y-coordinate 5418 705.660 000—5 419 211.810 000
231.010 000—525.110 000
3 665 873

Return number 4

Range of Z-coordinate

Number of footprint

Collection style Strip scanner

Table 2 Result analysis

Experiment item Value
Segmentation time/s 10
Strips division time/s 32

Classification time (including polynomial fitting)/s 54

Total time for running the method/s 96
Total number of points 3 665 873
Number of terrain points 743 174
Number of off-terrain points 2 922 699
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Fig. S Classification result of mining area: (a) Original LIDAR

data of mining area; (b) Surface buildings of mining area;
(c) Terrain data of mining area

Through analyzing the experimental result, the
accuracy of our classification method could achieve
92%—97%.
encryption method and gradient filter classification
method, the algorithm in this work increases the speed of
classification by 10 times at least. About 100 km® of
mining area was classified by this method within the

By comparing with progressive TIN

time of less than 1 h. Such high efficient measurement is
difficulty to be exceeded by traditional methods, such as
progressive TIN encryption method and gradient filter
classification method.

5 Conclusions and future work

A method of terrain classification based on adaptive
weights with airborne LiDAR data is proposed for
mining area. In this approach, the whole area is divided
into parallel strips in x- and y-direction. A set of
one-dimensional polynomials are fitted into the strips
based on adaptive weights. Then, the polynomial
tentatively goes through the terrain points. It spends 96 s
in processing 1 km> LiDAR data and costs less than 1 h
to classify 100 km® of mining area. The test shows that
the method can delete noisy points and achieve more
than 90% classification accuracy. The method directly
processes huge three-dimensional points without
secondary sampling. While maintaining the accuracy of
the original cloud, the time spending can be greatly
reduced for calculation and the computational
complexity is simplified.

In the next work, we plan to identify vegetation in
off-terrain points which will provide technical support
for the use of LiDAR technology in mining environment
monitoring. With development of accurate measurement
of airborne LiDAR, we believe that airborne LiDAR will
play more and more

important role in mining

environmental monitoring in the near future.
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