ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 23    No. 11    November 2013

[PDF]    [Flash]
First principles calculation of electronic structure, chemical bonding and elastic properties of ultra-incompressible Re2P
Yi-fu WANG1, Qing-lin XIA2, Yan YU2
(1. Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China), College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China;
2. School of Physics and Electronics, Central South University, Changsha 410083, China
)
Abstract: The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the orthorhombic structure phase Re2P is metallic material. The density of state (DOS) and the partial density of state (PDOS) calculations show that the DOS near the Fermi level is mainly from the Re-5d state. Population analysis suggests that the chemical bonding in Re2P has predominantly covalent character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, and elastic constants Cij, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that the Co2P-type structure phase Re2P is mechanically stable and behaves in a brittle manner.
Key words: Re2P; first principles; electronic structures; chemical bonding; elastic properties
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9