ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 27    No. 8    August 2017

[PDF]    [Flash]
Nanospike surface-modified bionic porous titanium implant and in vitro osteogenic performance
Guo-hui WANG1 , Hua FU1 , Ke-chao ZHOU2, Yan-zhong ZHAO1, Shai-hong ZHU1
(1. Third Xiangya Hospital of Central South University, Central South University, Changsha 410013, China; 2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China)
Abstract: This work aimed to prepare the nanospike surface-modified bionic porous titanium implants that feature favorable osteointegration performance and anti-bacterial functions. The implant was prepared using freeze casting, and nanospike surface-modification of the implant was performed using thermal oxidation. The pore morphology and size, mechanical properties, and osteogenic performance of the implants were analyzed and discussed. The results showed that when the volume ratio of titanium powder in slurry was set to be 10%, the porosity, pore diameter, compressive strength, and elastic modulus of the porous samples were (58.32±1.08)%, (126.17±18.64) μm, (58.51±20.38) MPa and (1.70±0.52) GPa, respectively. When the porous sample was sintered at a temperature of 1200 °C for 1 h, these values were (58.24±1.50)%, (124.16±13.64) μm, (54.77±27.55) MPa and (1.63±0.30) GPa, respectively. The nanospike surface-modified bionic porous titanium implants had favorable pore morphology and size, mechanical properties and osteointegration performance through technology optimization, and showed significant clinical application prospect.
Key words: nanospike surface-modification; bionic porous titanium; osteogenic performance; freeze casting; thermal oxidation
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9