ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 29    No. 7    July 2019

[PDF]    [Flash]
Individual and synergistic effect of gamma alumina (γ-Al2O3) and strontium on microstructure and mechanical properties of Al-20Si alloy
Mihira ACHARYA, Animesh MANDAL
(School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar, Argul 752050, Odisha, India)
Abstract: An optimized combination of gamma alumina (4 wt.%) and strontium (0.1 wt.%) was incorporated in cast Al-20Si alloy to obtain fine form of silicon. During casting process, the amount of γ-Al2O3 was varied from 0.5-6 wt.% to refine primary Si and Sr was varied from 0.05-0.1 wt.% to modify eutectic Si. The results showed that the average size of primary Si is 24 μm for addition of 4 wt.% γ-Al2O3 to the alloy whereas 0.1 wt.% Sr resulted in sphericity of eutectic Si to ~0.6 and average length of ~1.2 μm. The thermal analysis revealed that γ-Al2O3 can act as potential heterogeneous nucleation sites. Moreover, simultaneous addition of γ-Al2O3 and Sr does not poison γ-Al2O3 particles and inhibit their nucleation efficiency as in the case of combined addition of phosphorous and strontium to Al-20Si alloy. Therefore, it was concluded that enhanced tensile strength, i.e., ultimate tensile strength (increase by 20%) and elongation (increase by 23%) in Al-20Si-4γ-Al2O3-0.1wt.%Sr alloy as compared to as-cast Al-20Si alloy can be attributed to refinement of primary Si, modification of eutectic Si and the presence of α(Al) in the alloy as evident from eutectic shift.
Key words: Al-Si alloy; γ-Al2O3; refinement; modification; primary Si
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9