Preparation and properties of C/C-ZrB2-SiC composites by high-solid-loading slurry impregnation and polymer infiltration and pyrolysis (PIP)
(State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China)
Abstract: Ultrahigh-temperature ceramics were added to C/C composites to meet their application requirement in a high-temperature oxidizing environment. C/C-ZrB2-SiC composites were fabricated by high-solid-loading slurry impregnation with polymer infiltration and pyrolysis. The dispersion and rheological behavior of ZrB2 slurry and the microstructural, mechanical, and ablation properties of the C/C-ZrB2-SiC composites were investigated. Results indicated that a well-dispersed and low-viscosity ZrB2 slurry was obtained using 0.40 wt.% polyethyleneimine as a dispersant at pH 5. Ceramics were uniformly distributed in the short-cut fiber layer and needle-punched area. The flexural strength of the C/C-ZrB2-SiC composites was 309.30 MPa. The composites exhibited satisfactory ablation resistance under the oxyacetylene flame of 2500 °C, and the mass and linear ablation rates were 0.40 mg/s and 0.91 μm/s, respectively. A continuous and compact ZrO2 layer, which could effectively reduce the diffusion rate of oxygen and protect the composites from being ablated, was formed.
Key words: C/C-ZrB2-SiC composites; microstructure; mechanical properties; ablation properties