ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 31    No. 10    October 2021

[PDF]    [Flash]
Microstructural and mechanical properties assessment of transient liquid phase bonding of CoCuFeMnNi high entropy alloy
Mohammad Ali KARIMI, Morteza SHAMANIAN, Mohammad Hossein ENAYATI
(Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran)
Abstract: The transient liquid phase (TLP) bonding of CoCuFeMnNi high entropy alloy (HEA) was studied. The TLP bonding was performed using AWS BNi-2 interlayer at 1050 °C with the TLP bonding time of 20, 60, 180 and 240 min. The effect of bonding time on the joint microstructure was characterized by SEM and EDS. Microstructural results confirmed that complete isothermal solidification occurred approximately at 240 min of bonding time. For samples bonded at 20, 60 and 180 min, athermal solidification zone was formed in the bonding area which included Cr-rich boride and Mn3Si intermetallic compound. For all samples, the γ solid solution was formed in the isothermal solidification zone of the bonding zone. To evaluate the effect of TLP bonding time on mechanical properties of joints, the shear strength and micro-hardness of joints were measured. The results indicated a decrement of micro-hardness in the bonding zone and an increment of micro-hardness in the adjacent zone of joints. The minimum and maximum values of shear strength were 100 and 180 MPa for joints with the bonding time of 20 and 240 min, respectively.
Key words: high entropy alloy; CoCuFeMnNi alloy; transient liquid phase bonding; bonding time; solid solution; isothermal solidification; microstructure; mechanical properties
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9