ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 32    No. 5    May 2022

[PDF]    [Flash]
Impact strength and structural refinement of A380 aluminum alloy produced through gas-induced semi-solid process and Sr addition
M. HONARMAND, M. SALEHI, S. G. SHABESTARI, H. SAGHAFIAN
(School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran)
Abstract: Semi-solid processing of A380 aluminum alloy was performed by gas induced semi-solid (GISS) process. The effects of argon inert gas flow rate, starting temperature and duration of gas purging as key GISS parameters and also modification with Sr on the structural refinements, hardness and impact strength of GISS alloys were investigated. Microstructural evolution shows that there is an important effect of the pouring temperature and Sr addition on the morphology and size of primary α(A1) in the alloy to change from coarse dendritic to fine globular structure. The best sample which has fine grains of 51.18 μm in average size and a high level of globularity of 0.89 is achieved from a GISS processing of Sr modified alloy in which the gas purging started at 610 °C. The impact strength of the GISS optimized samples ((4.67±0.18) J/cm2) shows an increase of about 40% with respect to the as-cast sample due to the globular structure and fibrous Si morphology. Moreover, the hardness of the optimized GISS sample ((89.34±2.85) HB) increases to (93.84±3.14) HB by modification with the Sr and GISS process. The fracture surface of Sr modified alloy is also dominated by complex topography showing typical ductile fracture features.
Key words: gas-induced semi-solid process; impact strength; A380 aluminium alloy; globular structure; modification
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9