ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 17    No. 5    October 2007

[PDF]    
Microstructure and mechanical properties of Zr-Cu-Al bulk metallic glasses
MA Wen-jie(马文杰)1, WANG Yu-ren(王育人)1, WEI Bing-chen(魏炳忱)1, SUN Yu-feng(孙玉峰)2
(1. National Microgravity Laboratory, Institute of Mechanics,Chinese Academy of Sciences, Beijing 100080, China; 2. Research Center for Materials, Department of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China)
Abstract: Zr49Cu46Al5 and Zr48.5Cu46.5Al5 bulk metallic glasses(BMGs) with diameter of 5 mm were prepared through water-cooled copper mold casting. The phase structures of the two alloys were identified by X-ray diffractometry(XRD). The thermal stability was examined by differential scanning calorimetry(DSC). Zr49Cu46Al5 alloy shows a glass transition temperature, Tg, of about 689 K, an crystallization temperature, Tx, of about 736 K. The Zr48.5Cu46.5Al5 alloy shows no obvious exothermic peak. The microstructure of the as-cast alloys was analyzed by transmission electron microscopy(TEM). The aggregations of CuZr and CuZr2 nanocrystals with grain size of about 20 nm are observed in Zr49Cu46Al5 nanocrystalline composite, while the Zr48.5Cu46.5Al5 alloy containing many CuZr martensite plates is crystallized seriously. Mechanical properties of bulk Zr49Cu46Al5 nanocrystalline composite and Zr48.5Cu46.5Al5 alloy measured by compression tests at room temperature show that the work hardening ability of Zr48.5Cu46.5Al5 alloy is larger than that of Zr49Cu46Al5 alloy.
Key words: bulk metallic glass; mechanical properties; nanocrystalline composite
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9