ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 17    No. 5    October 2007

[PDF]    
Finite element analysis on stresses field of normalized layer thickness within ceramic coating on aluminized steel
WU Zhen-qiang(吴振强), XIA Yuan(夏 原), LI Guang(李 光), XU Fang-tao(徐方涛)
(Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China )
Abstract: Multilayer ceramic coatings were fabricated on steel substrate using a combined technique of hot dipping aluminum(HDA) and plasma electrolytic oxidation(PEO). A triangle of normalized layer thickness was created for describing thickness ratios of HDA/PEO coatings. Then, the effect of thickness ratio on stresses field of HDA/PEO coatings subjected to uniform normal contact load was investigated by finite element method. Results show that the surface tensile stress is mainly affected by the thickness ratio of Al layer when the total thickness of coating is unchanged. With the increase of Al layer thickness, the surface tensile stress rises quickly. When Al2O3 layer thickness increases, surface tensile stress is diminished. Meanwhile, the maximum shear stress moves rapidly towards internal part of HDA/PEO coatings. Shear stress at the Al2O3 /Al interface is minimal when Al2O3 layer and Al layer have the same thickness.
Key words: normalized layer thickness; multilayer coatings; inferfacial stresses; finite element method(FEM)
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9