Microwave absorbing properties of La0.8Ba0.2MnO3 nano-particles
(School of Physics Science and Technology, Central South University, Changsha 410083, China)
Abstract: La0.8Ba0.2MnO3 nano-particles were synthesized by sol-gel process, and the crystal structure and morphology were characterized by XRD and SEM, respectively. The complex permittivity and permeability were determined by microwave vector network analyzer in the frequency range of 2−18 GHz. The relationship between reflection coefficient and microwave frequency of La0.8Ba0.2 MnO3 was calculated based on measured data. The results show that the average diameter of La0.8Ba0.2MnO3 crystal powders is about 80 nm and the crystal structure is perovskite when being calcined at 800 ℃ for 2 h. The microwave absorbing peak is 13 dB at 6.7 GHz and the effective absorbing bandwidth above 10 dB reaches 1.8 GHz for the sample with the thickness of 2.6 mm. The microwave absorption can be attributed to both the dielectric loss and the magnetic loss from the loss tangents of the sample, but the former is greater than the latter.
Key words: La0.8Ba0.2MnO3; nano-particles; microwave absorbing materials; electromagnetic loss; sol-gel