ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 18    No. 5    October 2008

[PDF]    
Role of ore mineralogy in optimizing conditions for bioleaching low-grade complex sulphide ores
P. A. OLUBAMBI1, 2, S. NDLOVU1, J. H. POTGIETER1, J. O. BORODE2
(1. School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, South Africa;
2. Department of Metallurgical and Materials Engineering, Federal University of Technology, Akure, Nigeria
)
Abstract: The role that ore mineralogy plays in understanding and optimizing the conditions favouring the bioleaching of complex sulphide ore containing high amounts of siderite was studied using mixed cultures of mesophilic bacteria, with emphasis on zinc, lead and copper recoveries. The influencing parameters investigated include particle size, stirring speed, volume of inoculum, pulp density, and pH. The results show that the mixed mesophilic cultures can extract about two and a half times the amount of zinc than copper over an equivalent period of time. The highest zinc and copper recoveries of 89.2% and 36.4% respectively are obtained at particle size of 75 µm, stirring speed of 150 r/min, pulp density of 10% (w/v), 12% (v/v) inoculum concentration, and a pH of 1.6. Variations in elemental composition within different particle sizes resulting from the mineralogy of the ore account for the bioleaching behaviour at varying particle sizes. The dissolution at varying pulp density, volume of inoculum, solution pH and the low solution potential observed are also influenced by ore mineralogy.
Key words: sulphide ore; ore mineralogy; mesophiles; bioleaching; processing parameters
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9