ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 18    No. 6    December 2008

[PDF]    [Flash]
Microbial aspects of acid mine drainage and its bioremediation
K.A. NATARAJAN
(Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India)
Abstract: The role of chemolithotrophs such as Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans which were isolated from some abandoned mines and processed waste tailings in the generation of acid mine drainage and toxic metal dissolution was discussed. Mechanisms of acid formation and dissolution of copper, zinc, iron and arsenic from copper, lead-zinc and arsenopyrite-bearing sulfide ores and tailings were established in the presence of Acidithiobacillus group of bacteria. Sulphate Reducing Bacteria(SRB) isolated from the above mine sites could be used to precipitate dissolved metals such as copper, zinc, iron and arsenic. Arsenic bioremediation was demonstrated through the use of native microorganisms such Thiomonas spp. which could oxidize arsenite to arsenate. Bioremoval of arsenic through the use of jarosite precipitates generated by Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans was also found to be very effective. Biotechnological processes  hold great promise in the remediation of acid mine drainage and efficient removal of toxic metal ions such as copper, zinc and arsenic.
Key words: acid mine drainage; acidithiobacillus; arsenic bioremediation; sulphate reducing bacteria; sulfide precipitation
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9